Solveeit Logo

Question

Mathematics Question on Integral Calculus

sin2πxdx=∫sin^2 πx dx =?

A

x214πsin2πx+C\dfrac{x}{2}-\dfrac{1}{4π} sin2πx+C

B

x2+18πsin4πx+C\dfrac{x}{2}+\dfrac{1}{8π} sin4πx+C

C

x814πcos2πx+C\dfrac{x}{8}-\dfrac{1}{4π} cos2πx+C

D

x+12πsin2πx+Cx+\dfrac{1}{2π} sin2πx+C

E

x212πcos2πx+C\dfrac{x}{2}-\dfrac{1}{2π} cos2πx+C

Answer

x214πsin2πx+C\dfrac{x}{2}-\dfrac{1}{4π} sin2πx+C

Explanation

Solution

sin2πxdx∫sin^2 πx dx

=(1212Cos(2πx))dx=∫(\dfrac{1}{2}-\dfrac{1}{2} Cos(2πx)) dx

=12dxCos(2πx)dx=∫\dfrac{1}{2}dx-∫Cos(2πx)dx

=x2Sin2πx4π+C=\dfrac{x}{2} -\dfrac{Sin2πx}{4π} +C (Ans)