Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

sin1(1e)>tan1(1π)sin^{-1}\left(\frac{1}{\sqrt{e}}\right)> tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right) sin1x>tan1ysin^{-1}\,x>tan^{-1}\,y for x>y,x,y(0,1)x>y, \forall \,x, y \,\in\left(0, 1\right)

A

Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1

B

Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1

C

Statement -1 is false, Statement-2 is true

D

Statement -1 is true, Statement-2 is false

Answer

Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1

Explanation

Solution

sin1x=tan1x1x2>tan1x>tan1ysin^{-1}\,x = tan^{-1} \frac{x}{\sqrt{1-x^{2}}}> tan ^{-1}\,x > tan^{-1}\,y \therefore statement-2 is true e1πe \frac{1}{\sqrt{\pi}} by statement-2. sin1(1e)>tan1(1e)>tan1(1π)sin^{-1}\left(\frac{1}{\sqrt{e}}\right)> tan^{-1}\left(\frac{1}{\sqrt{e}}\right) >tan^{-1} \left(\frac{1}{\sqrt{\pi}}\right) statement-1 is true