Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

sin1(cosπ6)\sin^{-1} \left(\cos \frac{\pi}{6}\right) is equal to:

A

π2\frac{\pi}{2}

B

π6\frac{\pi}{6}

C

π3\frac{\pi}{3}

D

3π2\frac{3\pi}{2}

Answer

π3\frac{\pi}{3}

Explanation

Solution

Let sin1[cosπ6]=θ\sin^{-1} \left[\cos \frac{\pi}{6} \right] =\theta cosπ6=sinθ32=sinθ\Rightarrow \cos \frac{\pi}{6} = \sin\theta \Rightarrow \frac{\sqrt{3}}{2} = \sin\theta Now, cosθ=1sin2θ=1(32)2 \cos\theta = \sqrt{1 - \sin^{2} \theta} = \sqrt{1 - \left(\frac{\sqrt{3}}{2}\right)^{2}} =134=12 = \sqrt{1 - \frac{3}{4}} = \frac{1}{2} cosθ=cosπ3θ=π3 \Rightarrow \cos\theta = \cos \frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{3} sin1[cosπ6]=π3\therefore \sin^{-1} \left[\cos \frac{\pi}{6}\right] = \frac{\pi}{3}