Solveeit Logo

Question

Question: \(\sin^{- 1}\left( x - \frac{x^{2}}{2} + \frac{x^{3}}{4} - ...... \right) + \cos^{- 1}\left( x^{2} -...

sin1(xx22+x34......)+cos1(x2x42+x64......)=π2\sin^{- 1}\left( x - \frac{x^{2}}{2} + \frac{x^{3}}{4} - ...... \right) + \cos^{- 1}\left( x^{2} - \frac{x^{4}}{2} + \frac{x^{6}}{4} - ...... \right) = \frac{\pi}{2} for

0<|x|<2\sqrt{2}, then x equals

A

12\frac{1}{2}

B

1

C

12\frac{1}{2}

D

–1

Answer

1

Explanation

Solution

The given equation implies

sin1(x1+x2)+cos1(x21+x22)=π2\sin^{- 1}\left( \frac{x}{1 + \frac{x}{2}} \right) + \cos^{- 1}\left( \frac{x^{2}}{1 + \frac{x^{2}}{2}} \right) = \frac{\pi}{2}

2x2+x=2x22+x2x=1\frac{2x}{2 + x} = \frac{2x^{2}}{2 + x^{2}} \Rightarrow x = 1