Solveeit Logo

Question

Question: Simplify the multiplication of complex numbers: \[\left( {x,y} \right) \times \left( {1,0} \right)\]...

Simplify the multiplication of complex numbers: (x,y)×(1,0)\left( {x,y} \right) \times \left( {1,0} \right)
A) (x,y)\left( { - x, - y} \right)
B) (y,x)\left( {y,x} \right)
C) (x,y)\left( {x,y} \right)
D) None of these

Explanation

Solution

Hint : We will solve this question by first taking (x,y)\left( {x,y} \right) as (x+iy)\left( {x + iy} \right) and (1,0)\left( {1,0} \right) as (1+i0).\left( {1 + i0} \right). Then on multiplying both the complex numbers we will get the required answer.

Complete step-by-step answer :
A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation i2 = −1. Because no real number satisfies this equation, i is called an imaginary number.

We have been given complex numbers and we need to simplify the multiplication (x,y)×(1,0).\left( {x,y} \right) \times \left( {1,0} \right).
So, (x,y)\left( {x,y} \right) can be written as (x+iy)\left( {x + iy} \right)
And (1,0)\left( {1,0} \right) can be written as (1+i0)\left( {1 + i0} \right)
Now, we can write (x,y)×(1,0)\left( {x,y} \right) \times \left( {1,0} \right) as (x+iy)×(1+i0)\left( {x + iy} \right) \times \left( {1 + i0} \right)
So, (x,y)×(1,0) = (x+iy)×(1+i0)\left( {x,y} \right) \times \left( {1,0} \right){\text{ }} = {\text{ }}\left( {x + iy} \right) \times \left( {1 + i0} \right)

{\left( {x,y} \right) \times \left( {1,0} \right){\text{ }} = {\text{ }}\left( {x + iy} \right) \times \left( 1 \right)} \\\ {\left( {x,y} \right) \times \left( {1,0} \right){\text{ }} = {\text{ }}\left( {x + iy} \right)} \\\ {\left( {x,y} \right) \times \left( {1,0} \right){\text{ }} = {\text{ }}\left( {x,y} \right)} \end{array}$$ **So, the correct answer is “Option C”.** **Note** : Complex numbers are a combination of real and imaginary numbers. And when two complex numbers multiply, the first complex number gets multiplied by each part of the second complex number.