Solveeit Logo

Question

Question: Simplify the given logarithmic expression:\({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x -...

Simplify the given logarithmic expression:xlogylogz.ylogzlogx.zlogxlogy{x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}.

Explanation

Solution

Hint: Here, we will simplify the given expression by using the properties of logarithms like log(a.b)=loga+logb\log (a.b) = \log a + \log b and logab=bloga\log {a^b} = b\log a to find the value of x.

Complete step-by-step answer:
Consider the given expression as X and take log\log both sides,
X=xlogylogz.ylogzlogx.zlogxlogy logX=log(xlogylogz.ylogzlogx.zlogxlogy)  X = {x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}} \\\ \Rightarrow \log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\\
Here we can use log(a.b)=loga+logb\log (a.b) = \log a + \log b

logX=log(xlogylogz.ylogzlogx.zlogxlogy) logX=log(xlogylogz)+log(ylogzlogx)+log(zlogxlogy) logX=(logylogz)log(x)+(logzlogx)log(y)+(logxlogy)log(z) [logab=bloga] logX=logylogxlogzlogx+logzlogylogxlogy+logxlogzlogylogz logX=0 X=100 [taking anti - log] X=1  \log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\\ \Rightarrow \log X = \log ({x^{\log y - \log z}}) + \log ({y^{\log z - \log x}}) + \log ({z^{\log x - \log y}}) \\\ \Rightarrow \log X = (\log y - \log z)\log (x) + (\log z - \log x)\log (y) + (\log x - \log y)\log (z){\text{ }}[\because \log {a^b} = b\log a] \\\ \Rightarrow \log X = \log y\log x - \log z\log x + \log z\log y - \log x\log y + \log x\log z - \log y\log z \\\ \Rightarrow \log X = 0 \\\ \Rightarrow X = {10^0}{\text{ }}[{\text{taking anti - log}}] \\\ \Rightarrow X = 1 \\\

Hence, the value of the given expression is 1.

Note: If the base of the logarithm is not given, we can consider the base as 10 i.e. common logarithm. These are the circular questions. In this question we are playing with x, y, z. We can add one-two more variables and form a bigger question. Nevertheless, the concept to solve the problem will not change.