Solveeit Logo

Question

Question: Simplify the given expression. \( \sin \left( {\pi - \theta } \right) + \cos \left( {\dfrac{{3\pi...

Simplify the given expression.
sin(πθ)+cos(3π2+θ)+sin(π+θ)+cos(3π2θ)\sin \left( {\pi - \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) + \sin \left( {\pi + \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} - \theta } \right)

Explanation

Solution

Hint: In this particular type of question we need to simplify the trigonometric functions by using the formulas of sin(πθ)=sinθ,cos(3π2+θ)=cosθ,sin(π+θ)=sinθ and cos(3π2θ)=cosθ\sin \left( {\pi - \theta } \right) = \sin \theta ,\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \cos \theta ,\sin \left( {\pi + \theta } \right) = - \sin \theta {\text{ and }}\cos \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \cos \theta keeping in mind their signs in different quadrants. After simplifying we need to solve the trigonometric equation to get the desired answer.

Complete step-by-step answer:
The expression given is,
sin(πθ)+cos(3π2+θ)+sin(π+θ)+cos(3π2θ)\sin \left( {\pi - \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) + \sin \left( {\pi + \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} - \theta } \right)
Now we will substitute the terms by the trigonometry formula. i.e.
sin(πθ)=sinθ,cos(3π2+θ)=cosθ,sin(π+θ)=sinθ and cos(3π2θ)=cosθ\sin \left( {\pi - \theta } \right) = \sin \theta ,\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \cos \theta ,\sin \left( {\pi + \theta } \right) = - \sin \theta {\text{ and }}\cos \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \cos \theta

sinθ+cosθsinθcosθ =0 \begin{gathered} \Rightarrow \sin \theta + \cos \theta - \sin \theta - \cos \theta \\\ = 0 \\\ \end{gathered}
( Since sin θ\theta is positive in πθ\pi - \theta and negative in π+θ\pi + \theta and cos θ\theta is positive in 3π2+θ\dfrac{{3\pi }}{2} + \theta and negative in 3π2θ\dfrac{{3\pi }}{2} - \theta )

Note-
It is important to recall that Sin and Cos are positive in the first - second quadrant and the first fourth - quadrant respectively. Note that Sin and Cos are both positive in the first quadrant but differ in the others.