Solveeit Logo

Question

Question: Simplify the following using identities. a.\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\] ...

Simplify the following using identities.
a.(109)2+(91)2{\left( {109} \right)^2} + {\left( {91} \right)^2}
b.(200)2(100)2{\left( {200} \right)^2} - {\left( {100} \right)^2}
c.(1025)2(975)2{\left( {1025} \right)^2} - {\left( {975} \right)^2}
d.(10)2+(20)2{\left( {10} \right)^2} + {\left( {20} \right)^2}

Explanation

Solution

Firstly, observe the question and then use the identity (a+b)2+(ab)2=2[a2+b2]{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right] , a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) , (a+b)2(ab)2=4ab{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab , a2+b2=(a+b)22ab{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab . With the formula we can easily simplify this equation by knowing all the variables i.e a and b.

Formula Used: Here, we can use the formula according to the requirement of the question(a+b)2+(ab)2=2[a2+b2]{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right] , a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) , (a+b)2(ab)2=4ab{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab , a2+b2=(a+b)22ab{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab

Complete step-by-step answer:
Now, we will begin with:
(a)(109)2+(91)2{\left( {109} \right)^2} + {\left( {91} \right)^2}
First, split 109 and 91 in factors of 100.
(100+9)2+(1009)2\Rightarrow {\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}
Here, it becomes an identity (a+b)2+(ab)2=2[a2+b2]{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]
Now considering left hand side , {\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = $$$${\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}
From here, we can clearly see that a=100a = 100 and b=9b = 9 .
Put the values of a and b in right hand side of formula 2[a2+b2] \Rightarrow 2\left[ {{a^2} + {b^2}} \right]
2[(100)2+(9)2]\Rightarrow 2\left[ {{{\left( {100} \right)}^2} + {{\left( 9 \right)}^2}} \right]
By opening the squares:
2[10000+81]\Rightarrow 2\left[ {10000 + 81} \right]
On further simplifying:
2[10081]\Rightarrow 2\left[ {10081} \right]
We get, 20162 \Rightarrow 20162
{\left( {109} \right)^2} + {\left( {91} \right)^2}$$$$ \Rightarrow 20162

(b)(200)2(100)2{\left( {200} \right)^2} - {\left( {100} \right)^2}
As, it is clearly visible that is a2b2{a^2} - {b^2} and hence we can use the identity a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) .
Now considering left hand side , {a^2} - {b^2}$$$$ = {\left( {200} \right)^2} - {\left( {100} \right)^2}
From here, we can clearly see that a=200a = 200 and b=100b = 100 .
Put the values of a and b in right hand side of formula (ab)(a+b) \Rightarrow \left( {a - b} \right)\left( {a + b} \right)
(200100)(200+100)\Rightarrow \left( {200 - 100} \right)\left( {200 + 100} \right)
On simplifying:
100300\Rightarrow 100 * 300
We get, 30000 \Rightarrow 30000
{\left( {200} \right)^2} - {\left( {100} \right)^2}$$$$ \Rightarrow 30000

(c)(1025)2(975)2{\left( {1025} \right)^2} - {\left( {975} \right)^2}
First, of all split 1025 and 975 in factors of 1000.
(1000+25)2(100025)2\Rightarrow {\left( {1000 + 25} \right)^2} - {\left( {1000 - 25} \right)^2}
Here, it becomes an identity (a+b)2(ab)2=4ab{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab
Now considering left hand side , {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = $$$${\left( {1000 + 25} \right)^2} + {\left( {1000 - 25} \right)^2}
From here, we can clearly see that a=1000a = 1000 and b=25b = 25 .
Put the values of a and b in right hand side of formula 4ab \Rightarrow 4ab
4100025\Rightarrow 4*1000*25
By multiplying:
100000\Rightarrow 100000
{\left( {1025} \right)^2} - {\left( {975} \right)^2}$$$$ \Rightarrow 100000

(d)(10)2+(20)2{\left( {10} \right)^2} + {\left( {20} \right)^2}
As, it is clearly visible that is a2+b2{a^2} + {b^2} and hence we can use the identity a2+b2=(a+b)22ab{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab
Now considering left hand side , {a^2} + {b^2}$$$$ = {\left( {10} \right)^2} + {\left( {20} \right)^2}
From here, we can clearly see that a=10a = 10 and b=20b = 20 .
Put the values of a and b in right hand side of formula =(a+b)22ab = {\left( {a + b} \right)^2} - 2ab
(10+20)221020\Rightarrow {\left( {10 + 20} \right)^2} - 2 * 10 * 20
(30)221020\Rightarrow {\left( {30} \right)^2} - 2 * 10 * 20
On simplifying square,
90021020\Rightarrow 900 - 2 * 10 * 20
And on multiplying,
900400\Rightarrow 900 - 400
We get, 500 \Rightarrow 500
{\left( {10} \right)^2} + {\left( {20} \right)^2}$$$$ \Rightarrow 500

Note: In this type of question, first of all observe the given statements and calculate the values. Accordingly, implement the identities which are most appropriate.