Solveeit Logo

Question

Question: Simplify the following : \(\dfrac{{{{\left( {1 - i} \right)}^3}}}{{1 - {i^3}}}\)...

Simplify the following :
(1i)31i3\dfrac{{{{\left( {1 - i} \right)}^3}}}{{1 - {i^3}}}

Explanation

Solution

Hint:- As we know (a3b3)=(ab)(a2+b2+ab)\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right).

Complete step-by-step answer:
We can write the given equation as (1i)313i3\dfrac{{{{\left( {1 - i} \right)}^3}}}{{{1^3} - {i^3}}}
And as we know (a3b3)=(ab)(a2+b2+ab)\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)
Then we can write the equation as (1i)3(1i)(12+i2+1i)\dfrac{{{{\left( {1 - i} \right)}^3}}}{{\left( {1 - i} \right)\left( {{1^2} + {i^2} + 1i} \right)}}
=(1i)2(12+i2+1i)= \dfrac{{{{\left( {1 - i} \right)}^2}}}{{\left( {{1^2} + {i^2} + 1i} \right)}} as we know (i2=1)\left( {{i^2} = - 1} \right)

=(122i+i2)i =2ii =2  = \dfrac{{\left( {{1^2} - 2i + {i^2}} \right)}}{i} \\\ = \dfrac{{ - 2i}}{i} \\\ = - 2 \\\

Note:- In such a type of question, First apply algebraic formula to reduce it. And then solve to get the result.