Solveeit Logo

Question

Question: simplify the expression \[\tan \left[ \left( \dfrac{1}{2} \right){{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}...

simplify the expression tan[(12)sin12x1+x2+(12)cos11y21+y2]\tan \left[ \left( \dfrac{1}{2} \right){{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}+\left( \dfrac{1}{2} \right){{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right] where xy1xy\ne 1

Explanation

Solution

We can solve this question by using the basic trigonometric functions and inverse of trigonometric functions formulas and properties. Here we first need to solve the sine inverse and cosine inverse separately first using double angle formulas and then solve the tangent function to get the answer needed.

Complete step-by-step solution:
To solve this expression we will first start by solving and simplifying the sine inverse function that is
sin12x1+x2{{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}
First we let x here be equal to tangent since doing that would let us allow the double angle formula therefore let
x=tanθx=\tan \theta
Therefore
sin12tanθ1+tan2θ{{\sin }^{-1}}\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }
Now using the identity for tangent here we know that
sin12tanθsec2θ{{\sin }^{-1}}\dfrac{2\tan \theta }{{{\sec }^{2}}\theta }
Writing tangent and secant function in form of sine and cosine functions
sin12sinθcos2θcosθ{{\sin }^{-1}}\dfrac{2\sin \theta {{\cos }^{2}}\theta }{\cos \theta }
Dividing and simplifying we get
sin1sin2θ{{\sin }^{-1}}\sin 2\theta
Therefore first part is equal to 2θ2\theta
Now for the cosine function cos11y21+y2{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}}
We start by letting y be tangent function too
cos11tan2α1+tan2α{{\cos }^{-1}}\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }
Now using the identity for tangent here we know that
cos11tan2αsec2α{{\cos }^{-1}}\dfrac{1-{{\tan }^{2}}\alpha }{{{\sec }^{2}}\alpha }
Writing tangent and secant function in form of sine and cosine functions
cos11sin2αcos2α1cos2α{{\cos }^{-1}}\dfrac{1-\dfrac{{{\sin }^{2}}\alpha }{{{\cos }^{2}}\alpha }}{\dfrac{1}{{{\cos }^{2}}\alpha }}
Taking LCM of numerator
cos1cos2αsin2αcos2α1cos2α{{\cos }^{-1}}\dfrac{\dfrac{{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha }{{{\cos }^{2}}\alpha }}{\dfrac{1}{{{\cos }^{2}}\alpha }}
This gives us
cos1(cos2αsin2α){{\cos }^{-1}}\left( {{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha \right)
Now using double angle formula we get that
cos1(cos2α){{\cos }^{-1}}\left( \cos 2\alpha \right)
Therefore the cosine part of the expression can be written as 2α2\alpha
Now substituting these values we get
tan[(12)2θ+(12)2α]\tan \left[ \left( \dfrac{1}{2} \right)2\theta +\left( \dfrac{1}{2} \right)2\alpha \right]
tan[θ+α]\tan \left[ \theta +\alpha \right]
Now taking the sum formula of tangent we get that the expression equals to
tanθ+tanα1tanθtanα\dfrac{\tan \theta +\tan \alpha }{1-\tan \theta \tan \alpha }
Now we know that the value of θ\theta and α\alpha in forms of tangent are
x=tanθx=\tan \theta ; y=tanαy=\tan \alpha
Therefore putting the values of x and y in the expression we get that
x+y1xy\dfrac{x+y}{1-xy}
Hence tan[(12)sin12x1+x2+(12)cos11y21+y2]=x+y1xy\tan \left[ \left( \dfrac{1}{2} \right){{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}+\left( \dfrac{1}{2} \right){{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right]=\dfrac{x+y}{1-xy}

Note: If an equation for all values for an angle is true and the equation involves trigonometric ratios then the equation is called to be a trigonometric identity. An alternative to solve this question is that instead of substituting tan and solving it to get the double angle we can also use the sine double angle formula for tangent function.