Solveeit Logo

Question

Question: Simplify the expression: \(\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin (...

Simplify the expression:
sin(270+x)cos3(720x)sin(270x)sin3(540+x)sin(90+x)sin(x)cos2(180x)+cot(270x)cosec2(450+x)\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}

Explanation

Solution

In order to this question, to simplify the given expression, first we will rewrite the given expression and then we will analyse or rewrite the trigonometric ratios which we can use to simplify the given expression, and then we will simplify until we will get the simplified value.

Complete step-by-step solution:
The given expression is:
sin(270+x)cos3(720x)sin(270x)sin3(540+x)sin(90+x)sin(x)cos2(180x)+cot(270x)cosec2(450+x)\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}
As we know, sin(270+θ)=cosθ\sin ({270^\circ} + \theta ) = - \cos \theta ,
sin(270θ)=cosθ\sin ({270^\circ} - \theta ) = - \cos \theta
cos(720θ)=cosθ\cos ({720^\circ} - \theta ) = \cos \theta ,
sin(540+θ)=sinθ\sin ({540^\circ} + \theta ) = -\sin \theta
cot(270θ)=tanθ\cot ({270^\circ} - \theta ) = \tan \theta and
cosec(450+θ)=secθ\cos ec({450^\circ} + \theta ) = \sec \theta
So,
sin(270+x)cos3(720x)sin(270x)sin3(540+x)sin(90+x)sin(x)cos2(180x)+cot(270x)cosec2(450+x)\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}
=cosx×cos3x(cosx×sin3x)cosxsinxcos2x+tanxsec2x= \dfrac{{ - \cos x \times {{\cos }^3}x - (-\cos x \times {-{\sin }^3}x)}}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\tan x}}{{{{\sec }^2}x}}
=cos4xsin3xcosxcosxsinxcos2x+sinxcosx×cos2x= \dfrac{{ - {{\cos }^4}x - {{\sin }^3}x}\cos x}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\sin x}}{{\cos x}} \times {\cos ^2}x
=cosx(cos3x+sin3x)cosx(sinx+cosx)+sinxcosx= \dfrac{{ -\cos x ({{\cos }^3}x + {{\sin }^3}x)}}{{ - \cos x(\sin x + \cos x)}} + \sin x\cos x
=sin3x+cos3xsinx+cosx+sinxcosx=\dfrac{{{{{\sin}^3}x}+{{\cos }^3}x}}{{\sin x+\cos x}} + \sin x\cos x
We know that a3+b3=(a+b)(a2ab+b2){a}^3+{b}^3 = \left(a+b\right)\left(a^2-ab+b^2\right) on using this identity
=\dfrac{\require{\cancel}{\cancel{\left(\sin x+\cos x \right)}}\left({{\cos}^2{x}}-\cos x \sin x +{{\sin}^{2}x}\right)}{\require{\cancel}{\cancel{{\sin x+\cos x}}}}+\sin x \cos x
=cos2xsinxcosx+sin2x+sinxcosx={{\cos }^2}x - \sin x\cos x +{{\sin }^2}x+\sin x \cos x
=cos2x+sin2x= {{\cos }^2}x+{{\sin }^2}x
=1=1
Since we know the identity cos2x+sin2x=1{{\cos }^2}x+{{\sin }^2}x=1 . Hence the final answer is 1.

Note:
\bullet There are multiple ways to represent a trigonometric expression.
\bullet Simplifying one side of the equation to equal the other side is a method for verifying an identity.
\bullet The approach to verifying an identity depends on the nature of the identity.
\bullet We can create an identity from a given expression.
\bullet Verifying an identity may involve algebra with the fundamental identities.