Question
Question: Simplify the expression \(\dfrac{\cos (2\pi +A)\cdot \cos ec(2\pi +A)\cdot \tan (2\pi +A)}{\sec (2\p...
Simplify the expression sec(2π+A).sinA.cot(π+A)cos(2π+A)⋅cosec(2π+A)⋅tan(2π+A)
A. 0
B. 2
C. 1
D. 3
Solution
Hint: We can solve this question by using trigonometric periodicity identities.
These are cos(2π+A)=cosA , cosec(2π+A)=cosecA,tan(2π+A)=tanA,sec(2π+A)=secA, cot(2π+A)=cotA
Complete step by step solution:
Given expression is sec(2π+A).sinA.cot(π+A)cos(2π+A)⋅cosec(2π+A)⋅tan(2π+A)
By using trigonometric periodicity identities we can write given expression as
⇒sec(2π+A).sinA.cot(π+A)cos(2π+A)⋅cosec(2π+A)⋅tan(2π+A)=secA⋅sinA⋅cotAcosA⋅cosecA⋅tanA
⇒sec(2π+A).sinA.cot(π+A)cos(2π+A)⋅cosec(2π+A)⋅tan(2π+A)=cosA1⋅sinA⋅cotAcosA⋅sinA1⋅tanA \left\\{ \because \cos ecA=\dfrac{1}{\sin A},\sec A=\dfrac{1}{\cos A} \right\\}
⇒sec(2π+A).sinA.cot(π+A)cos(2π+A)⋅cosec(2π+A)⋅tan(2π+A)=tanA⋅cotAcotA⋅tanA \left\\{ \because \dfrac{\cos A}{\sin A}=\cot A,\dfrac{\sin A}{\cos A}=\tan A \right\\}
⇒sec(2π+A).sinA.cot(π+A)cos(2π+A)⋅cosec(2π+A)⋅tan(2π+A)=1
Hence option C is correct.
Note:In general periodic trigonometric functions are that which repeats it’s value after certain values of angles.
Sin and Cos are periodic functions with period 2π.
Period of tan is π.