Solveeit Logo

Question

Question: Simplify the expression \({{\cos }^{4}}x-{{\sin }^{4}}x\)...

Simplify the expression cos4xsin4x{{\cos }^{4}}x-{{\sin }^{4}}x

Explanation

Solution

Hint: Use the algebraic identity a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). Convert cos4xsin4x{{\cos }^{4}}x-{{\sin }^{4}}x in the form of a2b2{{a}^{2}}-{{b}^{2}} and use the previously mentioned identity. Use the fact that cos2xsin2x=cos2x{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x. Hence simplify the expression. Alternatively use Euler's identity to solve the expression. Use the fact that cosx=eix+eix2\cos x=\dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2} and sinx=eixeix2i\sin x=\dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i}. Use the binomial theorem to expand the terms (eix+eix)4{{\left( {{e}^{ix}}+{{e}^{-ix}} \right)}^{4}} and (eixeix)4{{\left( {{e}^{ix}}-{{e}^{-ix}} \right)}^{4}} . Finally, simplify and use the identity eix+eix=2cosx{{e}^{ix}}+{{e}^{-ix}}=2\cos x and hence find the simplified expression.

Complete step-by-step answer:
Let S=cos4xsin4xS={{\cos }^{4}}x-{{\sin }^{4}}x
We have S =cos4xsin4x={{\cos }^{4}}x-{{\sin }^{4}}x
We know that cos4x=(cos2x)2{{\cos }^{4}}x={{\left( {{\cos }^{2}}x \right)}^{2}} and sin4x=(sin2x)2{{\sin }^{4}}x={{\left( {{\sin }^{2}}x \right)}^{2}}
Hence, we have
cos4xsin4x=(cos2x)2(sin2x)2{{\cos }^{4}}x-{{\sin }^{4}}x={{\left( {{\cos }^{2}}x \right)}^{2}}-{{\left( {{\sin }^{2}}x \right)}^{2}}
Hence, we have
S =(cos2x)2(sin2x)2={{\left( {{\cos }^{2}}x \right)}^{2}}-{{\left( {{\sin }^{2}}x \right)}^{2}}
We know that a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)
Using the above identity, we get
S =(cos2x+sin2x)(cos2xsin2x)=\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)
We know that cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1
Hence, we have
S =(1)(cos2xsin2x)=\left( 1 \right)\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)
We know that cos2xsin2x=cos2x{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x
Using the above identity, we get
S =cos2x=\cos 2x
Hence S= cos2x
Hence, we have
cos4xsin4x=cos2x{{\cos }^{4}}x-{{\sin }^{4}}x=\cos 2x which is the required simplified form of the expression.

Note: Alternative solution:
We know from Euler’s identity cosx+isinx=eix\cos x+i\sin x={{e}^{ix}}
Hence, we have cosx+isinx=eix (i)\cos x+i\sin x={{e}^{ix}}\text{ (i)}
Replace x by -x, we get
cosxisinx=eix (ii)\cos x-i\sin x={{e}^{-ix}}\text{ (ii)}
Adding equation (i) and equation (ii), we get
2cosx=eix+eixcosx=eix+eix22\cos x={{e}^{ix}}+{{e}^{-ix}}\Rightarrow \cos x=\dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2}
Subtracting equation (i) and equation (ii), we get
sinx=eixeix2i\sin x=\dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i}
Hence, we have
S =(eix+eix2)4(eixeix2i)4={{\left( \dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2} \right)}^{4}}-{{\left( \dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i} \right)}^{4}}
We know that (a+b)4=a4+4a3b+6a2b2+4ab3+b4{{\left( a+b \right)}^{4}}={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}
Using the above identity, we get
S=ei4x+4ei2x+6+4ei2x+ei4x16ei4x4ei2x+64ei2x+ei4x16S=\dfrac{{{e}^{i4x}}+4{{e}^{i2x}}+6+4{{e}^{-i2x}}+{{e}^{-i4x}}}{16}-\dfrac{{{e}^{i4x}}-4{{e}^{i2x}}+6-4{{e}^{-i2x}}+{{e}^{-i4x}}}{16}
Hence, we have
S=8(ei2x+ei2x)16S=\dfrac{8\left( {{e}^{i2x}}+{{e}^{-i2x}} \right)}{16}
We know that eix+eix=2cosx{{e}^{ix}}+{{e}^{-ix}}=2\cos x
Replacing x by 2x, we get
ei2x+ei2x=2cos2x{{e}^{i2x}}+{{e}^{-i2x}}=2\cos 2x
Hence, we have S=1616cos2xS=\dfrac{16}{16}\cos 2x
Hence, we have S =cos2x, which is the required simplified expression.