Solveeit Logo

Question

Question: Simplify \({\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)\)...

Simplify tan1(cosx+sinxcosxsinx){\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)

Explanation

Solution

It is given in the question that we have to simplify tan1(cosx+sinxcosxsinx){\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)
Firstly, we will multiply whole equation with cos x then
After that applying property (tanA+tanB1tanAtanB)=tan(A+B)\left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right) = \tan \left( {A + B} \right) we will get answer.

Complete step by step solution:
It is given in the question that we have to simplify tan1(cosx+sinxcosxsinx){\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)
tan1(cosx+sinxcosxsinx)\because {\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)
Now, divide the whole equation by cos x,

tan1(cosxcosx+sinxcosxcosxcosxsinxcosx)\therefore {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\cos x}}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{\cos x}}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}}}} \right)
tan1(1+tanx1tanx)\therefore {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)
Since we can write 1 as tan π4\dfrac{\pi }{4}
tan1(tanπ4+tanx1tanπ4tanx)\therefore {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4}\tan x}}} \right)
Now, applying property of (tanA+tanB1tanAtanB)=tan(A+B)\left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right) = \tan \left( {A + B} \right)
tan1[tan(π4+x)]\therefore {\tan ^{ - 1}}\left[ {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right]

π4+x\therefore \dfrac{\pi }{4} + x

Note:
Some properties of tanθ\tan \theta :

  1. tan2θ=sec2θ1{\tan ^2}\theta = {\sec ^2}\theta - 1
  2. tan(θ)=tanθ\tan \left( { - \theta } \right) = - \tan \theta
  3. tan2θ=2tanθ1tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}
  4. tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
  5. tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}