Solveeit Logo

Question

Question: Simplify: $(\sqrt{2}+1)^{6}-(\sqrt{2}-1)^{6}$...

Simplify: (2+1)6(21)6(\sqrt{2}+1)^{6}-(\sqrt{2}-1)^{6}

A

1402140\sqrt{2}

B

101

C

70270\sqrt{2}

D

1202120\sqrt{2}

Answer

1402140\sqrt{2}

Explanation

Solution

To simplify the expression (2+1)6(21)6(\sqrt{2}+1)^{6}-(\sqrt{2}-1)^{6}, we can use the binomial theorem.

Let a=2a = \sqrt{2} and b=1b = 1. The expression is of the form (a+b)6(ab)6(a+b)^6 - (a-b)^6.

The binomial expansion for (a+b)n(a+b)^n is: (a+b)n=(n0)anb0+(n1)an1b1+(n2)an2b2++(nn)a0bn(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^0 b^n

The binomial expansion for (ab)n(a-b)^n is: (ab)n=(n0)anb0(n1)an1b1+(n2)an2b2+(1)n(nn)a0bn(a-b)^n = \binom{n}{0}a^n b^0 - \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 - \dots + (-1)^n \binom{n}{n}a^0 b^n

When we subtract (ab)n(a-b)^n from (a+b)n(a+b)^n, the terms with even powers of bb cancel out, and the terms with odd powers of bb are doubled: (a+b)n(ab)n=2[(n1)an1b1+(n3)an3b3+(n5)an5b5+](a+b)^n - (a-b)^n = 2 \left[ \binom{n}{1}a^{n-1}b^1 + \binom{n}{3}a^{n-3}b^3 + \binom{n}{5}a^{n-5}b^5 + \dots \right]

In this case, n=6n=6, a=2a=\sqrt{2}, and b=1b=1. So, the expression becomes: (2+1)6(21)6=2[(61)(2)61(1)1+(63)(2)63(1)3+(65)(2)65(1)5](\sqrt{2}+1)^6 - (\sqrt{2}-1)^6 = 2 \left[ \binom{6}{1}(\sqrt{2})^{6-1}(1)^1 + \binom{6}{3}(\sqrt{2})^{6-3}(1)^3 + \binom{6}{5}(\sqrt{2})^{6-5}(1)^5 \right] =2[(61)(2)5+(63)(2)3+(65)(2)1]= 2 \left[ \binom{6}{1}(\sqrt{2})^5 + \binom{6}{3}(\sqrt{2})^3 + \binom{6}{5}(\sqrt{2})^1 \right]

Now, we calculate the binomial coefficients and powers of 2\sqrt{2}: (61)=6\binom{6}{1} = 6 (63)=6×5×43×2×1=20\binom{6}{3} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20 (65)=(665)=(61)=6\binom{6}{5} = \binom{6}{6-5} = \binom{6}{1} = 6

(2)1=2(\sqrt{2})^1 = \sqrt{2} (2)3=(2)2×2=22(\sqrt{2})^3 = (\sqrt{2})^2 \times \sqrt{2} = 2\sqrt{2} (2)5=(2)4×2=((2)2)2×2=22×2=42(\sqrt{2})^5 = (\sqrt{2})^4 \times \sqrt{2} = ((\sqrt{2})^2)^2 \times \sqrt{2} = 2^2 \times \sqrt{2} = 4\sqrt{2}

Substitute these values back into the expression: =2[6(42)+20(22)+6(2)]= 2 \left[ 6(4\sqrt{2}) + 20(2\sqrt{2}) + 6(\sqrt{2}) \right] =2[242+402+62]= 2 \left[ 24\sqrt{2} + 40\sqrt{2} + 6\sqrt{2} \right] =2[(24+40+6)2]= 2 \left[ (24+40+6)\sqrt{2} \right] =2[702]= 2 \left[ 70\sqrt{2} \right] =1402= 140\sqrt{2}