Solveeit Logo

Question

Question: Simplify \( \sin \left( {4\theta } \right) \) to trigonometric functions of unit \( \theta \)...

Simplify sin(4θ)\sin \left( {4\theta } \right) to trigonometric functions of unit θ\theta

Explanation

Solution

Hint : The given problem can be solved by using the double angle formulae of sine and cosine. Use of double angle formulae help us to convert the sin(4θ)\sin \left( {4\theta } \right) to trigonometric functions of unit (2θ)\left( {2\theta } \right) and then to trigonometric functions of unit θ\theta . Double angle formulae for sine and cosine are: sin(2x)=2sin(x)cos(x)\sin \left( {2x} \right) = 2\sin (x)\cos (x) and cos(2x)=(12sin2x)=(2cos2x1)\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right) = \left( {2{{\cos }^2}x - 1} \right)

Complete step-by-step answer :
For simplifying sin(4θ)\sin \left( {4\theta } \right) to trigonometric functions of unit θ\theta , we first use double angle formulae of sine to convert sin(4θ)\sin \left( {4\theta } \right) to trigonometric functions of unit (2θ)\left( {2\theta } \right) .
Using sin(2x)=2sin(x)cos(x)\sin \left( {2x} \right) = 2\sin (x)\cos (x) in the given problem, we get,
sin(4θ)\sin \left( {4\theta } \right) == \sin \left\\{ {2\left( {2\theta } \right)} \right\\}
== 22 sin(2θ)\sin \left( {2\theta } \right) cos(2θ)\cos \left( {2\theta } \right)
Now, we have to convert trigonometric functions of unit (2θ)\left( {2\theta } \right) into trigonometric functions of unit θ\theta by using the double angle formulae.
Again using sin(2x)=2sin(x)cos(x)\sin \left( {2x} \right) = 2\sin (x)\cos (x)
== 2(2sinθcosθ)2\left( {2\sin \theta \cos \theta } \right) cos(2θ)\cos \left( {2\theta } \right)
Now, we have to use a double angle formula for cosine to convert cos(2θ)\cos \left( {2\theta } \right) into trigonometric functions of unit θ\theta .
Using cos(2x)=(12sin2x)\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right) ,
== 2(2sinθcosθ)(12sin2θ)2\left( {2\sin \theta \cos \theta } \right)\left( {1 - 2{{\sin }^2}\theta } \right)
== 2(2sinθcosθ4sin3θcosθ)2\left( {2\sin \theta \cos \theta - 4{{\sin }^3}\theta \cos \theta } \right)
On simplifying further, we get,
== 4sinθcosθ8sin3θcosθ4\sin \theta \cos \theta - 8{\sin ^3}\theta \cos \theta
Hence, sin(4θ)\sin \left( {4\theta } \right) in terms of trigonometric functions of unit θ\theta is (4sinθcosθ8sin3θcosθ)\left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) .
So, the correct answer is “(4sinθcosθ8sin3θcosθ)\left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right)”.

Note : The above question can also be solved by using compound angle formulae instead of double angle formulae such as sin(A+B)=(sinAcosB+cosAsinB)\sin (A + B) = \left( {\sin A\cos B + \cos A\sin B} \right) and cos(A+B)=(cosAcosBsinAsinB)\cos (A + B) = \left( {\cos A\cos B - \sin A\sin B} \right) . This method can also be used to get to the answer of the given problem.