Solveeit Logo

Question

Question: Simplify: \( {{\left( 64 \right)}^{-\tfrac{2}{3}}}\times {{\left( \dfrac{1}{4} \right)}^{-3}} \) ...

Simplify: (64)23×(14)3{{\left( 64 \right)}^{-\tfrac{2}{3}}}\times {{\left( \dfrac{1}{4} \right)}^{-3}}
A. 4
B. 14\dfrac{1}{4}
C. 1
D. 16

Explanation

Solution

Recall some rules of exponents:
a0=1{{a}^{0}}=1
ax=1ax{{a}^{-x}}=\dfrac{1}{{{a}^{x}}}
ax×ay=ax+y{{a}^{x}}\times {{a}^{y}}={{a}^{x+y}}
(am)n=am×n{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}
axy=(ay)x=axy{{a}^{\tfrac{x}{y}}}={{\left( \sqrt[y]{a} \right)}^{x}}=\sqrt[y]{{{a}^{x}}}
If ax=b{{a}^{x}}=b , then we say that b1x=a{{b}^{\tfrac{1}{x}}}=a .
Observe that 64=2664={{2}^{6}} and 4=224={{2}^{2}} .

Complete step-by-step answer:
We observe that 64=4×4×464=4\times 4\times 4 .
The given expression (64)23×(14)3{{\left( 64 \right)}^{-\tfrac{2}{3}}}\times {{\left( \dfrac{1}{4} \right)}^{-3}} can be written as:
= (43)23×(14)3{{\left( {{4}^{3}} \right)}^{-\tfrac{2}{3}}}\times {{\left( \dfrac{1}{4} \right)}^{-3}}
Using the rule (am)n=am×n{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} , we get:
= 43×(23)×(14)3{{4}^{3\times \left( -\tfrac{2}{3} \right)}}\times {{\left( \dfrac{1}{4} \right)}^{-3}}
Using ax=1ax{{a}^{-x}}=\dfrac{1}{{{a}^{x}}} , we get:
= 42×1(14)3{{4}^{-2}}\times \dfrac{1}{{{\left( \dfrac{1}{4} \right)}^{3}}}
= 42×43{{4}^{-2}}\times {{4}^{3}}
Using ax×ay=ax+y{{a}^{x}}\times {{a}^{y}}={{a}^{x+y}} , we get:
= 42+3{{4}^{-2+3}}
= 41{{4}^{1}}
The correct answer is A. 4.

Note: Fractional powers with even denominators of negative quantities are complex numbers, and their rules of exponents are a little more exact.
Say, for instance: 2×32×3\sqrt{-2}\times \sqrt{-3}\ne \sqrt{-2\times -3} .
00{{0}^{0}} is not defined.
If ax×ay=am×an{{a}^{x}}\times {{a}^{y}}={{a}^{m}}\times {{a}^{n}} , then it is not necessary that x=mx=m and y=ny=n .