Solveeit Logo

Question

Question: Simplify \(\dfrac{{\cos 2A - 1}}{{\sin A}} + \dfrac{{\sin 2A \cdot \cos A}}{{\cos 2A + 1}}\)....

Simplify cos2A1sinA+sin2AcosAcos2A+1\dfrac{{\cos 2A - 1}}{{\sin A}} + \dfrac{{\sin 2A \cdot \cos A}}{{\cos 2A + 1}}.

Explanation

Solution

Here, in the given question, we need to solve cos2A1sinA+sin2AcosAcos2A+1\dfrac{{\cos 2A - 1}}{{\sin A}} + \dfrac{{\sin 2A \cdot \cos A}}{{\cos 2A + 1}}. As we can see, we are given trigonometric ratios of angle 2A2A in the given trigonometric equation. At first, we will try to simplify the given trigonometric equation using identities of trigonometric ratios of angle 2A2A. After this, we will cancel out the common terms to get our answer.

Formulas used:
cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A
cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1
sin2A=2sinAcosA\sin 2A = 2\sin A\cos A
In the above written formulae it should be noted that the angle on the RHS is half of the angle on LHS.

Complete step by step answer:
We have,
cos2A1sinA+sin2AcosAcos2A+1\dfrac{{\cos 2A - 1}}{{\sin A}} + \dfrac{{\sin 2A \cdot \cos A}}{{\cos 2A + 1}}
As we know cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A. Thus, we get cos2A1=2sin2A\cos 2A - 1 = - 2{\sin ^2}A.
So, we will replace cos2A1\cos 2A - 1 by 2sin2A - 2{\sin ^2}A.
As we know cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1. Thus, we get cos2A+1=2cos2A\cos 2A + 1 = 2{\cos ^2}A.
So, we will replace cos2A+1\cos 2A + 1 in the denominator by 2cos2A2{\cos ^2}A.
As we know sin2A=2sinAcosA\sin 2A = 2\sin A\cos A.
So, we will replace sin2A\sin 2A by 2sinAcosA2\sin A\cos A.
So now, on substituting these values, we get
2sin2AsinA+2sinAcosAcosA2cos2A\Rightarrow \dfrac{{ - 2{{\sin }^2}A}}{{\sin A}} + \dfrac{{2\sin A\cos A \cdot \cos A}}{{2{{\cos }^2}A}}
This can also be written as,
2sinAsinAsinA+2sinAcosAcosA2cosAcosA\Rightarrow \dfrac{{ - 2\sin A \cdot \sin A}}{{\sin A}} + \dfrac{{2\sin A\cos A \cdot \cos A}}{{2\cos A \cdot \cos A}}
On canceling out common terms, we get
2sinA+sinA\Rightarrow - 2\sin A + \sin A
On subtraction of terms, we get
sinA\Rightarrow - \sin A
Therefore, on solving cos2A1sinA+sin2AcosAcos2A+1\dfrac{{\cos 2A - 1}}{{\sin A}} + \dfrac{{\sin 2A \cdot \cos A}}{{\cos 2A + 1}} we get sinA - \sin A as our answer.

Note:
These type of questions are completely based on substation of formulae. To solve this type of questions, one must know all the trigonometric formulae, especially trigonometric ratios formulae for half angle, double angle, triple angles, etc. We should take care of the calculations so as to be sure of our final answer.
Some formulas are written below:
Trigonometric ratios of angle 2A2A in terms of angle AA.
1. sin2A=2sinAcosA\sin 2A = 2\sin A\cos A
2. cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A
3. cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1 or, 1+cos2A=2cos2A1 + \cos 2A = 2{\cos ^2}A
4. cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A or, 1cos2A=2sin2A1 - \cos 2A = 2{\sin ^2}A
5. tan2A=2tanA1tan2A\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}
6. sin2A=2tanA1+tan2A\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}
7. cos2A=1tan2A1+tan2A\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}
Trigonometric ratios of angle 3A3A in terms of angle AA.
8. sin3A=3sinA4sin3A\sin 3A = 3\sin A - 4{\sin ^3}A
9. cos3A=4cos3A3cosA\cos 3A = 4{\cos ^3}A - 3\cos A
10 tan3A=3tanAtan3A13tan2A\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}