Solveeit Logo

Question

Question: Simplify: \(\dfrac{{{\cos }^{2}}\left( {{180}^{0}}-\theta \right)+\dfrac{{{\cos }^{2}}\left( {{270...

Simplify:
cos2(1800θ)+cos2(2700+θ)sin(1800+θ)sin(θ)+cos2(2700+θ)sin(1800+θ)\dfrac{{{\cos }^{2}}\left( {{180}^{0}}-\theta \right)+\dfrac{{{\cos }^{2}}\left( {{270}^{0}}+\theta \right)}{\sin \left( {{180}^{0}}+\theta \right)}}{\sin \left( -\theta \right)}+\dfrac{{{\cos }^{2}}\left( {{270}^{0}}+\theta \right)}{\sin \left( {{180}^{0}}+\theta \right)}

Explanation

Solution

Hint: Here, we are going to use the trigonometric conversions as cos(1800θ)=cosθ\cos \left( {{180}^{0}}-\theta \right)=-\cos \theta , sin(1800+θ)=sinθ\sin \left( {{180}^{0}}+\theta \right)=-\sin \theta ,cos(2700+θ)=sinθ\cos \left( {{270}^{0}}+\theta \right)=\sin \theta and sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta . And then substitute these conversions in the trigonometric expression given in the question.

Complete step-by-step answer:
The trigonometric conversions that we are going to use in solving the expression given in the question are as follows:
cos(1800θ)=cosθ\cos \left( {{180}^{0}}-\theta \right)=-\cos \theta
This is because cosine is negative in the second quadrant.
sin(1800+θ)=sinθ\sin \left( {{180}^{0}}+\theta \right)=-\sin \theta
This is due to sin being negative in the third quadrant.
cos(2700+θ)=sinθ\cos \left( {{270}^{0}}+\theta \right)=\sin \theta
This is because cosine is positive in the fourth quadrant.
sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta
This is because sin is negative in the fourth quadrant.
Now, substituting these trigonometric conversions in the expression given in the question we get:
cos2(1800θ)+cos2(2700+θ)sin(1800+θ)sin(θ)+cos2(2700+θ)sin(1800+θ) cos2θ+sin2θsinθsinθ+sin2θsinθ \begin{aligned} & \dfrac{{{\cos }^{2}}\left( {{180}^{0}}-\theta \right)+\dfrac{{{\cos }^{2}}\left( {{270}^{0}}+\theta \right)}{\sin \left( {{180}^{0}}+\theta \right)}}{\sin \left( -\theta \right)}+\dfrac{{{\cos }^{2}}\left( {{270}^{0}}+\theta \right)}{\sin \left( {{180}^{0}}+\theta \right)} \\\ & \Rightarrow \dfrac{{{\cos }^{2}}\theta +\dfrac{{{\sin }^{2}}\theta }{-\sin \theta }}{-\sin \theta }+\dfrac{{{\sin }^{2}}\theta }{-\sin \theta } \\\ \end{aligned}
Now, in the above step we will take 1sinθ-\dfrac{1}{\sin \theta }as common and in the expression of sin2θsinθ\Rightarrow \dfrac{{{\sin }^{2}}\theta }{-\sin \theta }which lies in the numerator of the first rational expression; sin θ will be cancelled out from numerator and denominator and what will remain look like:
1sinθ(cos2θsinθ+sin2θ)\Rightarrow -\dfrac{1}{\sin \theta }\left( {{\cos }^{2}}\theta -\sin \theta +{{\sin }^{2}}\theta \right)
As we know that the trigonometric identity cos2θ+sin2θ{{\cos }^{2}}\theta+{{\sin }^{2}}\theta = 1. Substituting this identity value in the above expression we get,
1sinθ(1sinθ)  \begin{aligned} & \Rightarrow -\dfrac{1}{\sin \theta }\left( 1-\sin \theta \right) \\\ & \\\ \end{aligned}
Now, we are going to open the bracket and the expression will look like as follows:
1sinθ+sinθsinθ  \begin{aligned} &\Rightarrow -\dfrac{1}{\sin \theta }+\dfrac{\sin \theta }{\sin \theta } \\\ & \\\ \end{aligned}
We know that 1sinθ=cosecθ\dfrac{1}{\sin \theta }=\cos ec\theta , sinθsinθ=1\dfrac{\sin \theta }{\sin \theta }=1, substituting these values in the above expression we get,
\Rightarrow -cosec θ + 1
So, the expression given in the question simplifies to –cosec 𝛉 + 1.
Hence, the answer is –cosec θ + 1.

Note: We might think of opening the cos2(1800θ){{\cos }^{2}}\left( {{180}^{0}}-\theta \right) bracket as it look like cos(AB)\cos \left( A-B \right) identity then you will open the cos2(1800θ){{\cos }^{2}}\left( {{180}^{0}}-\theta \right) using this identity. The approach is correct but it’s a lengthy process as compared to the one that I have used in the above solution.