Solveeit Logo

Question

Question: Simplify \(\dfrac{{1 + \cos 2A + \sin 2A}}{{1 - \cos 2A + \sin 2A}}\) ?...

Simplify 1+cos2A+sin2A1cos2A+sin2A\dfrac{{1 + \cos 2A + \sin 2A}}{{1 - \cos 2A + \sin 2A}} ?

Explanation

Solution

Hint : In this question we have to use the formula of cos2A\cos 2A in terms of sin2Aandcos2A{\sin ^2}A\,\,and\,\,{\cos ^2}A , then we have to do some simplification and cancel out common terms to get to the end result. There is a great importance of formulas in trigonometry. Use of formulae and bringing both numerator and denominator in the same terms is the most important thing.
Formula used: (1)1+cos2A=2cos2A\left( 1 \right)\,\,1 + \cos 2A = 2{\cos ^2}A
(2)1cos2A=2sin2A\left( 2 \right)\,\,1 - \cos 2A = 2{\sin ^2}A
(3)sin2A=2sinAcosA\left( 3 \right)\,\,\sin 2A = 2\sin A\cos A

Complete step-by-step answer :
In the given question, we have given a equation in which there is a use of formulas of cos2A\cos 2A in terms of sin2Aandcos2A{\sin ^2}A\,\,and\,\,{\cos ^2}A and also there is a use of formula of sin2A\sin 2A in terms of sinAandcosA\sin A\,\,and\,\,\cos A .
Now, we have
1+cos2A+sin2A1cos2A+sin2A\Rightarrow \dfrac{{1 + \cos 2A + \sin 2A}}{{1 - \cos 2A + \sin 2A}}
Now we will use the formula 1+cos2A=2cos2A\,\,1 + \cos 2A = 2{\cos ^2}A in the numerator and 1cos2A=2sin2A\,1 - \cos 2A = 2{\sin ^2}A in the denominator.
On applying the formulas, we get
2cos2A+sin2A2sin2A+sin2A\Rightarrow \dfrac{{2{{\cos }^2}A + \sin 2A}}{{2{{\sin }^2}A + \sin 2A}}
Now use the formula sin2A=2sinAcosA\,\sin 2A = 2\sin A\cos A in both numerator and denominator.
2cos2A+2sinAcosA2sin2A+2sinAcosA\Rightarrow \dfrac{{2{{\cos }^2}A + 2\sin A\cos A}}{{2{{\sin }^2}A + 2\sin A\cos A}}
Taking common 2cosA2\cos A in the numerator and 2sinA2\sin A in the denominator.
2cosA(cosA+sinA)2sinA(sinA+cosA)\Rightarrow \dfrac{{2\cos A(\cos A + \sin A)}}{{2\sin A(\sin A + \cos A)}}
Now dividing the common term in numerator and denominator.
cosAsinA\Rightarrow \dfrac{{\cos A}}{{\sin A}}
We know that cosAsinA=cotA\dfrac{{\cos A}}{{\sin A}} = \cot A.cotA\cot A
So,
cotA\Rightarrow \cot A
Therefore, the value of 1+cos2A+sin2A1cos2A+sin2A\dfrac{{1 + \cos 2A + \sin 2A}}{{1 - \cos 2A + \sin 2A}} is cotA\cot A .
So, the correct answer is “ cotA\cot A”.

Note : The double angle trigonometric identities can be derived from the additional trigonometric identities. Basically, all you need to do is change all of the B’s to A’s.
sin (A+B) = sinAcosB + cosAsinB\Rightarrow sin{\text{ }}\left( {A + B} \right){\text{ }} = {\text{ }}sinAcosB{\text{ }} + {\text{ }}cosAsinB
Now changing the B’s to A’s you get:
sin(A+A) = sinAcosA + cosAsinA\Rightarrow sin\left( {A + A} \right){\text{ }} = {\text{ }}sinAcosA{\text{ }} + {\text{ }}cosAsinA
This simplifies down to: sin(2A) = 2sinAcosA{\mathbf{sin}}\left( {{\mathbf{2A}}} \right){\text{ }} = {\text{ }}{\mathbf{2sinAcosA}}
Likewise, we can also find the double angle identities for other trigonometric functions also using existing identities.