Solveeit Logo

Question

Mathematics Question on Matrices

Simplify cosθ\cos\theta [cosθsinθsinθcosθ]\begin{bmatrix}\cos\theta&\sin\theta\\\\-\sin\theta&\cos\theta\end{bmatrix}+sinθ\sin\theta [sinθcosθcosθsinθ]\begin{bmatrix}\sin\theta&-\cos\theta\\\\\cos\theta&\sin\theta\end{bmatrix}

Answer

\cos\theta$$\begin{bmatrix}\cos\theta&\sin\theta\\\\-\sin\theta&\cos\theta\end{bmatrix}+\sin\theta$$\begin{bmatrix}\sin\theta&-\cos\theta\\\\\cos\theta&\sin\theta\end{bmatrix}

=[cos2θcosθsinθsinθcosθcos2θ]\begin{bmatrix}\cos^2\theta&\cos\theta\sin\theta\\\\-\sin\theta\cos\theta&\cos^2\theta\end{bmatrix}+[sin2θsinθcosθsinθcosθsin2θ]\begin{bmatrix}\sin^2\theta&-\sin\theta\cos\theta\\\\\sin\theta\cos\theta&\sin^2\theta\end{bmatrix}

=[cos2θ+sin2θcosθsinθsinθcosθsinθcosθ+sinθcosθcos2θ+sin2θ]\begin{bmatrix}\cos^2\theta+\sin^2\theta&\cos\theta\sin\theta-\sin\theta\cos\theta\\\\-\sin\theta\cos\theta+\sin\theta\cos\theta&\cos^2\theta+\sin^2\theta\end{bmatrix}

=[10\01]\begin{bmatrix}1&0\\\0&1\end{bmatrix}