Solveeit Logo

Question

Question: Simplify and find the value of the following expression \(\dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}...

Simplify and find the value of the following expression sin3Acos(π2A)cosA+cos(π+3A)\dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}

Explanation

Solution

We need to find the value of sin3Acos(π2A)cosA+cos(π+3A)\dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)} . We start to solve the given question by finding out the value of cos(π2A) and cos(π+3A)\cos \left( \dfrac{\pi }{2}-A \right)\text{ and cos}\left( \pi +3A \right) . Then we will simplify the trigonometric expression using trigonometric formulae to get the desired result.

Complete step by step solution:
We are given a trigonometric expression and are asked to simplify it. We will be solving the given question by finding out the values of cos(π2A), cos(π+3A)\cos \left( \dfrac{\pi }{2}-A \right)\text{, cos}\left( \pi +3A \right) and simplifying the expression using formulae of trigonometry.

The angle (π2A)\left( \dfrac{\pi }{2}-A \right) lies in the 1st{{1}^{st}} quadrant and every trigonometric function is positive in the 1st{{1}^{st}}quadrant.
So, the value of cos(π2A)\cos \left( \dfrac{\pi }{2}-A \right) is also positive in the 1st{{1}^{st}} quadrant.
The cosine function changes to the sine function when the angle is 90 or 270.
Following the same, we get,
cos(π2A)=sinA\Rightarrow \cos \left( \dfrac{\pi }{2}-A \right)=\sin A
The angle (π+3A)\left( \pi +3A \right) lies in the 3rd{{3}^{rd}} quadrant and only tangent, cotangent is positive in the 3rd{{3}^{rd}} quadrant.
So, the value of cos(π+3A)\cos \left( \pi +3A \right) is negative in the 3rd{{3}^{rd}} quadrant.
The cosine function remains the same when the angle is 180 or 360.
Following the same, we get,
cos(π+3A)=cos3A\Rightarrow \cos \left( \pi +3A \right)=-\cos 3A
Now,
sin3Acos(π2A)cosA+cos(π+3A)\Rightarrow \dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}
Substituting the values in the given trigonometric expression, we get,
sin3AsinAcosAcos3A\Rightarrow \dfrac{\sin 3A-\sin A}{\cos A-\cos 3A}
From trigonometry, we know that
sin3A=3sinA4sin3A\Rightarrow \sin 3A=3\sin A-4{{\sin }^{3}}A
Substituting the value of sin3A, we get,
3sinA4sin3AsinAcosAcos3A\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-\cos 3A}
From trigonometry, we know that
cos3A=4cos3A3cosA\Rightarrow \cos 3A=4{{\cos }^{3}}A-3\cos A
Substituting the value of cos3A, we get,
3sinA4sin3AsinAcosA(4cos3A3cosA)\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-\left( 4{{\cos }^{3}}A-3\cos A \right)}
Multiplying the minus sign in to the brackets, we get,
3sinA4sin3AsinAcosA4cos3A+3cosA\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-4{{\cos }^{3}}A+3\cos A}
Simplifying the above expression, we get,
2sinA4sin3A4cosA4cos3A\Rightarrow \dfrac{2\sin A-4{{\sin }^{3}}A}{4\cos A-4{{\cos }^{3}}A}
Taking 2sinA common from the numerator, we get,
2sinA(12sin2A)4cosA4cos3A\Rightarrow \dfrac{2\sin A\left( 1-2{{\sin }^{2}}A \right)}{4\cos A-4{{\cos }^{3}}A}
Taking 4cosA common from the denominator, we get,
2sinA(12sin2A)4cosA(1cos2A)\Rightarrow \dfrac{2\sin A\left( 1-2{{\sin }^{2}}A \right)}{4\cos A\left( 1-{{\cos }^{2}}A \right)}
Substituting the same, we get,
12sinA(12sin2A)cosA(1cos2A)\Rightarrow \dfrac{1}{2}\dfrac{\sin A\left( 1-2{{\sin }^{2}}A \right)}{\cos A\left( 1-{{\cos }^{2}}A \right)}
From trigonometry,
12sin2A=cos2A\Rightarrow 1-2{{\sin }^{2}}A=\cos 2A
1cos2A=sin2A\Rightarrow 1-{{\cos }^{2}}A={{\sin }^{2}}A
Substituting the above values, we get,
12sinA×cos2AcosA×sin2A\Rightarrow \dfrac{1}{2}\dfrac{\sin A\times \cos 2A}{\cos A\times {{\sin }^{2}}A}
Simplifying the above expression, we get,
cos2A2sinAcosA\Rightarrow \dfrac{\cos 2A}{2\sin A\cos A}
From trigonometry, we know that sin2A=2sinAcosA\sin 2A=2\sin A\cos A
Substituting the same, we get,
cos2Asin2A\Rightarrow \dfrac{\cos 2A}{\sin 2A}
We know that cosAsinA=cotA\dfrac{\cos A}{\sin A}=\cot A
Following the same,
sin3Acos(π2A)cosA+cos(π+3A)=cot2A\therefore \dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}=\cot 2A

Note: We must remember that the cosine function is positive in the 1st{{1}^{st}} and 4th{{4}^{th}} quadrants and is negative in the 2nd{{2}^{nd}} and 3rd{{3}^{rd}} quadrants. The cosine function changes to the sine function when the angle is 90 or 270 and remains the same when the angle is 180 or 360.
cos(π2θ)=sinθ\Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta
cos(π+θ)=cosθ\Rightarrow \cos \left( \pi +\theta \right)=\cos \theta