Solveeit Logo

Question

Mathematics Question on Exponents and Powers

Simplify and express each of the following in exponential form:
(i) 23×34×43×32\frac{2^3\times 3^4\times4}{3\times 3^2}
(ii) ((52)3×54)÷57
(iii) 254÷53
(iv) 3×72×11821×113\frac{3\times7^2\times 11^8}{21\times11^3}
(v) 37×3433\frac{3^7\times3^4}{3^3}
(vi) 20+30+40
(vii) 20×30×40
(viii) (30+20)×50
(ix) 28×a543×a3\frac{2^8\times a^5}{4^3\times a^3}
(x) (a5a3×a8\frac{a^5}{a^3}\times a^8)
(xi) 45×a8b345×a5b2\frac{4^5\times a^8b^3}{4^5\times a^5b^2}
(xii) (23×2)2

Answer

(i) 23×34×43×32\frac{2^3\times 3^4\times4}{3\times 3^2}
= 23×34×223×32\frac{2^3\times 3^4\times2^2}{3\times 3^2}
= 25×34125\frac{2^5\times 3^4-1}{2^5} [am ÷ an = am - n]
= 33


(ii) ((52 )3 × 54) ÷ 57
= [56 × 54] ÷ 57 [(am)n = amn]
= 56 + 4 ÷ 57 [am × an = am + n]
= 510 ÷ 57
= 510 - 7 [am ÷ an = am - n]
= 53


(iii) 254 ÷ 53
= (52)4 ÷ 53
= 58 ÷ 53 [(am)n = amn]
= 58 - 3 [am ÷ an = am - n]
= 55


(iv) 3×72×11821×113\frac{3\times7^2\times 11^8}{21\times11^3}
= 3×72×1183×7×113\frac{3\times7^2\times 11^8}{3\times7\times11^3} [Since, 21 = 3 × 7]
= 72×1187×113\frac{7^2\times 11^8}{7\times11^3}
= 72 - 1 × 118 - 3 [am ÷ an = am - n]
= 7 × 115


(v) 37×3433\frac{3^7\times3^4}{3^3}
= 37 / 34 + 3 [am × an = am + n]
= 3737\frac{3^7}{3^7}
= 37 - 7 [am ÷ an = am-n]
= 30
= 1 [ao = 1]


(vi) 20 + 30 + 40
= 1 + 1 + 1 [ao = 1]
= 3
(vii) 20 × 30 × 40
= 1 × 1 × 1 [ao = 1]
= 1


(viii) (30 + 20) × 50
= (1 + 1) × 1 [ao = 1]
= 2 × 1
= 2


(ix) 28×a543×a3\frac{2^8\times a^5}{4^3\times a^3}
= 28×a5223×a3\frac{2^8\times a^5}{2^{2^3\times a^3}}
= 28×a526×a3\frac{2^8\times a^5}{2^6\times a^3} [(am)n = amn]
= 28 - 6 × a5 - 3 [am ÷ an = am - n]
= 22 × a2


(x)a5a3×a8\frac{a^5}{a^3}\times a^8
= a5 - 3 × a8 [am ÷ an = am - n]
= a2 × a8
= a2 + 8 [am × an = am + n]
= a10


(xi) 45×a8b345×a5b2\frac{4^5\times a^8b^3}{4^5\times a^5b^2}
= 45 - 5 × a8 - 5 × b3 - 2 [am ÷ an = am - n]
= 40 × a3 × b
= a3 × b [ao = 1]


(xii) (23 × 2)2
= (23 + 1)2 [am × an = am + n]
= (24)2
= 24 × 2 [(am)n = amn]
= 28