Solveeit Logo

Question

Mathematics Question on Laws of Exponents

Simplify.

  1. (25×t4)(53×10×t8)(t0)\frac{(25×t^{−4})}{(5^{−3}×10×t^{−8})} (t ≠ 0)
  2. (35×105×125)(57×65)\frac{ (3^{−5}×10^{−5}×125)}{(5^{−7}×6^{−5})}
Answer

(i) (25×t4)(53×10×t8)\frac{(25 × t^{−4})}{(5^{−3} × 10 × t^{−8})}

=(52×t4)(53×5×2×t8)= \frac{(5^2 × t^{−4})}{(5^{−3} × 5 × 2 × t^{−8} )}

=(52×t4)(53+1×2×t8)= \frac{(5^2 × t^{−4})}{(5^{−3 + 1} × 2 × t^{−8}) } [Since, am × an = am + n]

=(52×t4)(52×2×t8)= \frac{(5^2 × t^{−4})}{(5^{−2} × 2 × t^{−8})}

=(52(2)×t4(8))2= \frac{(5^{2−(−2)} × t^{−4−(−8)})}{2} [Since, aman=amn\frac{a^m}{a^n} = a^{m − n}]
=(54×t4+8)2= \frac{(5^4 × t^{−4 + 8})}{2}

=625 t42=\frac{ 625\ t^4}{2}


(ii) (35×105×125)(57×65)\frac{(3^{−5}×10^{−5}×125)}{(5^{−7}× 6^{−5})}

=(35×(2×5)5×53)(57×(2×3)5)= \frac{(3^{−5} × (2 × 5)^{−5} × 5^3)}{(5^{−7}× (2 × 3)^{-5})}

=35(5)×25(5)×55(7)+3= 3^{−5−(−5)} × 2^{−5−(−5)} × 5^{−5−(−7)+3 } [Since, am×an=am+na^m × a^n = a^{m + n} and aman=amn\frac{a^m}{a^n} = a^{m − n}]
=30×20×55= 3^0 × 2^0 × 5^5
=1×1×55= 1 × 1 × 5^5 [a0=1][∵a^0=1]
=55= 5^5