Solveeit Logo

Question

Question: \( \sim \left[ {\left( { \sim p} \right) \wedge q} \right]\) is logically equivalent to \(\left( a...

[(p)q] \sim \left[ {\left( { \sim p} \right) \wedge q} \right] is logically equivalent to
(a)(pq)\left( a \right) \sim \left( {p \vee q} \right)
(b)[p(q)]\left( b \right) \sim \left[ {p \wedge \left( { \sim q} \right)} \right]
(c)p(q)\left( c \right)p \wedge \left( { \sim q} \right)
(d)p(q)\left( d \right)p \vee \left( { \sim q} \right)
(e)(p)(q)\left( e \right)\left( { \sim p} \right) \vee \left( { \sim q} \right)

Explanation

Solution

In this particular question use the concept of distribution property i.e. (ab)=(a)(b) \sim \left( {a \wedge b} \right) = \left( { \sim a} \right) \vee \left( { \sim b} \right) and according to this property simplify the given expression so use these concepts to reach the solution of the question.

Complete step-by-step answer:
Given expression
[(p)q]\sim \left[ {\left( { \sim p} \right) \wedge q} \right]
Now according to the distributive property (ab)=(a)(b) \sim \left( {a \wedge b} \right) = \left( { \sim a} \right) \vee \left( { \sim b} \right), so use this property in the above equation we have,
[(p)q]=[(p)](q)\Rightarrow \sim \left[ {\left( { \sim p} \right) \wedge q} \right] = \left[ { \sim \left( { \sim p} \right)} \right] \vee \left( { \sim q} \right)................ (1)
Now as we know that ()\left( \sim \right) it is the symbol of negation, that is the opposite of something.
So, [(p)]\left[ { \sim \left( { \sim p} \right)} \right] = opposite of, opposite of something which is equivalent to something i.e. p.
Therefore, [(p)]\left[ { \sim \left( { \sim p} \right)} \right] = p, so use this property in equation (1) we have,
[(p)q]=[(p)](q)=p(q)\Rightarrow \sim \left[ {\left( { \sim p} \right) \wedge q} \right] = \left[ { \sim \left( { \sim p} \right)} \right] \vee \left( { \sim q} \right) = p \vee \left( { \sim q} \right)
Therefore, [(p)q]=p(q) \sim \left[ {\left( { \sim p} \right) \wedge q} \right] = p \vee \left( { \sim q} \right).
So, [(p)q] \sim \left[ {\left( { \sim p} \right) \wedge q} \right] is logically equivalent to p(q)p \vee \left( { \sim q} \right).
So this is the required answer.

So, the correct answer is “Option d”.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall the distribution property which is stated above and always recall that, ()\left( \sim \right)is the symbol of negation, that is opposite of something.