Solveeit Logo

Question

Question: Silver crystallises in FCC structure. If the density of silver is \(10.51g.c{{m}^{-3}}\). Calculate ...

Silver crystallises in FCC structure. If the density of silver is 10.51g.cm310.51g.c{{m}^{-3}}. Calculate the volume of the unit cell. Atomic mass of silver (Ag) = 108gm1108 g{{m}^{-1}}.

Explanation

Solution

FCC is face centred cubic unit cell. It contains four atoms per unit cell and has a coordination number of 12. To calculate the volume of unit cell we will use the formula:
Volume of unit cell=mass of unit celldensity of silverVolume\text{ }of\text{ }unit\text{ }cell=\frac{mass\text{ }of\text{ }unit\text{ }cell}{density\text{ }of\text{ }silver}
Formula used: Volume of unit cell=mass of unit celldensity of silverVolume\text{ }of\text{ }unit\text{ }cell=\frac{mass\text{ }of\text{ }unit\text{ }cell}{density\text{ }of\text{ }silver}

Complete step by step answer:
- We are being provided with a density of Ag= 10.51g.cm310.51 g.c{{m}^{-3}}, and atomic mass of silver (Ag) = 108gm1108 g{{m}^{-1}}.
- We have to find the volume of the unit cell, for which we will first calculate the mass of one atom of silver. We can use the following formula for this:
molar mass of silverNA\frac{molar\text{ }mass\text{ }of\text{ }silver}{{{N}_{A}}}
NA=6.022×1023{{N}_{A}}=6.022\times {{10}^{23}}; NA{{N}_{A}}is the Avogadro number, value ofNA=6.022×1023{{N}_{A}}=6.022\times {{10}^{23}}

& =\frac{108}{6.022\times {{10}^{23}}} \\\ & =17.93\times {{10}^{-23}} \\\ \end{aligned}$$ \- Now, we will find the mass of unit cell of silver = Atoms in unit cell x mass of one atom So, by putting values in this formula we get, $$\begin{aligned} & =4\times 17.93\times {{10}^{-23}} \\\ & =71.72\times {{10}^{-23}} \\\ \end{aligned}$$ \- So, as we know the value of mass of unit cell and the density of silver, we can calculate the volume of unit cell. As , $$Density=\frac{mass\text{ }of\text{ }unit\text{ }cell}{volume\text{ }of\text{ }unit\text{ }cell}$$ We can use the formula: $$Volume\text{ }of\text{ }unit\text{ }cell=\frac{mass\text{ }of\text{ }unit\text{ }cell}{density\text{ }of\text{ }silver}$$ By putting the values in this formula we get: $$\begin{aligned} & Volume\text{ }of\text{ }unit\text{ }cell={{\frac{71.72\times 10}{10.51}}^{-23}} \\\ & = 68.24\times {{10}^{-23}}c{{m}^{3}} \\\ \end{aligned}$$ **Hence, we can conclude that the volume of the unit cell is $68.24\times {{10}^{-23}}c{{m}^{3}}$.** **Note:** We must not forget to write the unit after solving any question. We must not get confused in terms of FCC and BCC. FCC is face centred cubic unit cell, it contains four atoms per unit cell. Whereas, BCC is a body centred unit cell, it contains 2 atoms per unit cell.