Solveeit Logo

Question

Physics Question on Electric Field

σ\sigma is the uniform surface charge density of a thin spherical shell of radius RR. The electric field at any point on the surface of the spherical shell is:

A

σϵ0R\frac{\sigma}{\epsilon_0 R}

B

σ2ϵ0\frac{\sigma}{2\epsilon_0}

C

σϵ0\frac{\sigma}{\epsilon_0}

D

σ4ϵ0\frac{\sigma}{4\epsilon_0}

Answer

σϵ0\frac{\sigma}{\epsilon_0}

Explanation

Solution

By Gauss's Law:

EdA=qinε0.\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{in}}}{\varepsilon_0}.

For a spherical shell, the electric field EE is constant across the surface area:

E4πR2=σ4πR2ε0.E \cdot 4\pi R^2 = \frac{\sigma \cdot 4\pi R^2}{\varepsilon_0}.

gaussin surface

E=σε0.E = \frac{\sigma}{\varepsilon_0}.

Thus, the electric field at the surface of the spherical shell is:

σε0.\boxed{\frac{\sigma}{\varepsilon_0}}.