Solveeit Logo

Question

Question: $\sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k}$...

k=0n(2kk)(2n2knk)\sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k}

A

(2nn)\binom{2n}{n}

B

4n4^n

C

22n2^{2n}

D

(4n2n)\binom{4n}{2n}

Answer

4n4^n

Explanation

Solution

Let the given summation be SnS_n. We are asked to find Sn=k=0n(2kk)(2n2knk)S_n = \sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k}. We use the generating function for the central binomial coefficients, which is f(x)=m=0(2mm)xm=114xf(x) = \sum_{m=0}^{\infty} \binom{2m}{m} x^m = \frac{1}{\sqrt{1-4x}}. The given sum SnS_n is the coefficient of xnx^n in the product of f(x)f(x) with itself, i.e., f(x)f(x)f(x) \cdot f(x). f(x)2=(114x)2=114xf(x)^2 = \left(\frac{1}{\sqrt{1-4x}}\right)^2 = \frac{1}{1-4x}. Expanding 114x\frac{1}{1-4x} as a geometric series, we get: 114x=n=0(4x)n=n=04nxn\frac{1}{1-4x} = \sum_{n=0}^{\infty} (4x)^n = \sum_{n=0}^{\infty} 4^n x^n. The coefficient of xnx^n in this expansion is 4n4^n. Therefore, Sn=4nS_n = 4^n.