Solveeit Logo

Question

Physics Question on Gravitation

Shown in the figure is a hollow icecream cone (it is open at the top). If its mass is M,M , radius of its top, RR and height, H,H , then its moment of inertia about its axis is:

A

MR22\frac{ MR ^{2}}{2}

B

MH23\frac{ MH ^{2}}{3}

C

MR23\frac{ MR ^{2}}{3}

D

M(R2+H2)4\frac{ M \left( R ^{2}+ H ^{2}\right)}{4}

Answer

MR22\frac{ MR ^{2}}{2}

Explanation

Solution


Area =πR=πR(H2+R2)=\pi R \ell=\pi R \left(\sqrt{ H ^{2}+ R ^{2}}\right) Area of element dA=2πrd=2πrdhcosθd A =2 \pi rd \ell=2 \pi r \frac{ dh }{\cos \theta} mass of element dm=MπRH2+R2×2πrdhcosθdm =\frac{ M }{\pi R \sqrt{ H ^{2}+ R ^{2}}} \times \frac{2 \pi rdh }{\cos \theta} dm=2MhtanθdhRH2+R2cosθdm =\frac{2 Mh \tan \theta dh }{ R \sqrt{ H ^{2}+ R ^{2}} \cos \theta} \quad (here r=htanθ)\left. r = h \tan \theta\right) I=(dm)r2=h2tan2θcosθ(2mRhtanθR2+H2)dhI =\int( dm ) r ^{2}=\int \frac{ h ^{2} \tan ^{2} \theta}{\cos \theta}\left(\frac{2 m }{ R } \frac{ h \tan \theta}{\sqrt{ R ^{2}+ H ^{2}}}\right) dh =2McosθRtan3θR2+H2=\frac{2 M }{\cos \theta R } \frac{\tan ^{3} \theta}{\sqrt{ R ^{2}+ H ^{2}}} 0Hh3dh=MR2H42RH3R2+H2cosθ\int\limits_{0}^{ H } h ^{3} dh =\frac{ MR ^{2} H ^{4}}{2 RH ^{3} \sqrt{ R ^{2}+ H ^{2}} \cos \theta} =MR2HR2+H22R2+H2×H=\frac{ MR ^{2} H \sqrt{ R ^{2}+ H ^{2}}}{2 \sqrt{ R ^{2}+ H ^{2} \times H }} =MR22=\frac{ MR ^{2}}{2}