Solveeit Logo

Question

Question: Shown in the figure is a circular loop of radius r and resistance R. A variable magnetic field of in...

Shown in the figure is a circular loop of radius r and resistance R. A variable magnetic field of induction B = e-t is established inside the coil. If the key (K) is closed at t = 0, the electrical power developed is equal to

A

πr2R\frac { \pi r ^ { 2 } } { R }

B

10r3R\frac { 10 r ^ { 3 } } { R }

C

π2r4R5\frac { \pi ^ { 2 } r ^ { 4 } R } { 5 }

D

10r4R\frac { 10 r ^ { 4 } } { R }

Answer

10r4R\frac { 10 r ^ { 4 } } { R }

Explanation

Solution

The induced emf = ε = − dϕdt\frac { \mathrm { d } \phi } { \mathrm { dt } }

= − = − A dBdt\frac { \mathrm { dB } } { \mathrm { dt } } = − (πr2) ddt(et)=πr2et\frac { d } { d t } \left( e ^ { - t } \right) = \pi r ^ { 2 } e ^ { - t }

⇒ εo = π r2 ett=0\left. e ^ { - t } \right| _ { t = 0 } = π r2

∴ The electrical power developed in the resistor just at the instant of closing the key = P = ε02R=π2r4R10r4R\frac { \varepsilon _ { 0 } ^ { 2 } } { R } = \frac { \pi ^ { 2 } r ^ { 4 } } { R } \cong \frac { 10 r ^ { 4 } } { R }

.Hence (D) is correct