Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Show that y=log(1+x)2x2+x, x>1y = log(1+x) - \frac {2x}{2+x}, \ x>-1,is an increasing function of x throughout its domain.

Answer

We have,

y = log(1+x) - 2x2+x\frac {2x}{2+x}

dydx\frac {dy}{dx} = 11+x\frac {1}{1+x} - (2+x)(2)2x(1)(2+x)2\frac {(2+x)(2)-2x(1)}{(2+x)^2} = 11+x\frac {1}{1+x} -4(2+x)2\frac {4}{(2+x)^2} = x2(2+x)2\frac {x^2}{(2+x)^2}

Now, dydx\frac {dy}{dx} = 0

x2(2+x)2\frac {x^2}{(2+x)^2} = 0

x2=0 [(2+x)≠0 as x>-1]

x=0

Since x >−1, point x = 0 divides the domain (−1, ∞) in two disjoint intervals i.e., −1<x<0 and x>0. When −1<x<0, we have:

x<0    \impliesx2>0

x>-1    \implies(2+x)>0 = (2+x)2>0

y' = x2(2+x)\frac {x^2}{(2+x)}>0

Also, when x > 0:

x>0    \impliesx2>0, (2+x)2>0

    \impliesy'=x2(2+x)2\frac {x^2}{(2+x)^2}>0

Hence, function f is increasing throughout this domain.