Solveeit Logo

Question

Question: Show that x=2 is the only root of the equation \({9^{{{\log }_3}[{{\log }_2}x]}} = {\log _2}x - {(...

Show that x=2 is the only root of the equation
9log3[log2x]=log2x(log2x)2+1{9^{{{\log }_3}[{{\log }_2}x]}} = {\log _2}x - {({\log _2}x)^2} + 1

Explanation

Solution

Hint: Here let’s use the properties alogan=n{\text{use the properties }}{{\text{a}}^{{{\log }_a}^n}} = n, logax=bx=ab,{\text{lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b}, ablogan=aloganb{{\text{a}}^b}^{{{\log }_a}^n} = {a^{{{\log }_a}{n^b}}} and arrange the terms to find the value of x.

Complete step-by-step answer:
Here we have
log3(log2x) is defined only when log2x=t(assumed) is + ve,i.e. , log2x>0=21 x>1 Also using the property alogan=n 9log3t=32log3(t)=3log3(t2)=t2 t2=tt2+1  {\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\\ \therefore x > 1 \\\ {\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\\ \Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\\ \therefore {t^2} = t - {t^2} + 1 \\\
Now re - arranging the terms, we get
 2t2t1=0   {\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\\
Splitting the middle terms, we get
(2t + 1)(t - 1) = 0 t=1 only (12 rejected as it is + ve) log2x=1 using the property logax=bx=ab, we get x = 21=2  {\text{(2t + 1)(t - 1) = 0}} \\\ \therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\\ \therefore {\text{lo}}{{\text{g}}_2}x = 1 \\\ {\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\\ {\text{x = }}{{\text{2}}^1} = 2 \\\
Thus there is only one root 22.

Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.