Solveeit Logo

Question

Mathematics Question on Vector Algebra

Show that the vectors 2i^j^+k^,i^3j^5k^2\hat{i}-\hat{j}+\hat{k},\hat{i}-3\hat{j}-5\hat{k} and 3i^4j^4k^3\hat{i}-4\hat{j}-4\hat{k} from the vertices of a right-angled triangle.

Answer

Let vectors 2i^j^+k^,i^3j^5k^2\hat{i}-\hat{j}+\hat{k},\hat{i}-3\hat{j}-5\hat{k} and 3i^4j^4k^3\hat{i}-4\hat{j}-4\hat{k} be position vectors of pointsA,B,and  C A,B,and \space C respectively.
i.e.,OA=2i^j^+k^,OB=i^3j^5k^  and  OC=3i^4j^4k^\overrightarrow{OA}=2\hat{i}-\hat{j}+\hat{k},\overrightarrow{OB}=\hat{i}-3\hat{j}-5\hat{k}\space and\space \overrightarrow{OC}=3\hat{i}-4\hat{j}-4\hat{k}
Now,vectors AB,BC  and  AC\overrightarrow{AB},\overrightarrow{BC}\space and\space \overrightarrow{AC}represents the sides of ABC.△ABC.
i.e.,OA=2i^j^+k^,OB=i^3j^5k^,  and  OC=3i^4j^4k^.i.e.,\overrightarrow{OA}→=2\hat{i}-\hat{j}+\hat{k},\overrightarrow{OB}=\hat{i}-3\hat{j}-5\hat{k},\space and \space \overrightarrow{OC}=3\hat{i}-4\hat{j}-4\hat{k}.
AB=(12)i^+(3+1)j^+(51)k^=i^2j^6k^∴\overrightarrow{AB}=(1-2)\hat{i}+(-3+1)\hat{j}+(-5-1)\hat{k}=-\hat{i}-2\hat{j}-6\hat{k}
BC=(31)i^+(4+3)j^(4+5)k^=2i^j^+k^\overrightarrow{BC}=(3-1)\hat{i}+(-4+3)\hat{j}(-4+5)\hat{k}=2\hat{i}-\hat{j}+\hat{k}
AC=(23)i^+(1+4)j^+(1+4)k^=i^+3j^+5k^\overrightarrow{AC}=(2-3)\hat{i}+(-1+4)\hat{j}+(1+4)\hat{k}=-\hat{i}+3\hat{j}+5\hat{k}
AB=(1)2+(2)2+(6)2=1+4+36=41|\overrightarrow{AB}|=\sqrt{(-1)^{2}+(-2)^{2}+(-6)^{2}}=\sqrt{1+4+36}=\sqrt{41}
BC=22+(1)2+12=4+1+1=6|\overrightarrow{BC}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{4+1+1}=\sqrt{6}
AC=(1)2+32+52=1+9+25=35|\overrightarrow{AC}|=\sqrt{(-1)^{2}+3^{2}+5^{2}}=\sqrt{1+9+25}=\sqrt{35}
BC2+AC2=6+35=41=AB2∴|\overrightarrow{BC}|2+|\overrightarrow{AC}|2=6+35=41=|\overrightarrow{AB}|^{2}
Hence,ABC,△ABC is a right-angled triangle.