Question
Mathematics Question on Vector Algebra
Show that the vectors 2i^−j^+k^,i^−3j^−5k^ and 3i^−4j^−4k^ from the vertices of a right-angled triangle.
Answer
Let vectors 2i^−j^+k^,i^−3j^−5k^ and 3i^−4j^−4k^ be position vectors of pointsA,B,andC respectively.
i.e.,OA=2i^−j^+k^,OB=i^−3j^−5k^andOC=3i^−4j^−4k^
Now,vectors AB,BCandACrepresents the sides of △ABC.
i.e.,OA→=2i^−j^+k^,OB=i^−3j^−5k^,andOC=3i^−4j^−4k^.
∴AB=(1−2)i^+(−3+1)j^+(−5−1)k^=−i^−2j^−6k^
BC=(3−1)i^+(−4+3)j^(−4+5)k^=2i^−j^+k^
AC=(2−3)i^+(−1+4)j^+(1+4)k^=−i^+3j^+5k^
∣AB∣=(−1)2+(−2)2+(−6)2=1+4+36=41
∣BC∣=22+(−1)2+12=4+1+1=6
∣AC∣=(−1)2+32+52=1+9+25=35
∴∣BC∣2+∣AC∣2=6+35=41=∣AB∣2
Hence,△ABC is a right-angled triangle.