Solveeit Logo

Question

Mathematics Question on Vector Algebra

Show that the vectors 2i^3j^+4k^2\hat{i}-3\hat{j}+4\hat{k} and 4i^+6k^8k^-4\hat{i}+6\hat{k}-8\hat{k} are collinear.

Answer

Let a=2i^3j^+4k^\vec{a}=2\hat{i}-3\hat{j}+4\hat{k}and b=4i^+6k^8k^\vec{b}=-4\hat{i}+6\hat{k}-8\hat{k}.
It is observed that \vec{b}=-4\hat{i}+6\hat{k}-8\hat{k}$$=-2(2\hat{i}-3\hat{j}+4\hat{k})$$=-2\vec{a}
b=λa∴\vec{b}=λ\vec{a}
where,
λ=2λ=-2
Hence,the given vectors are collinear.