Solveeit Logo

Question

Mathematics Question on Vector Algebra

Show that the vector i^+j^+k^\hat{i}+\hat{j}+\hat{k} is equally inclined to the axes OX,OY,and OZ.

Answer

Let a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k}
Then,
a=12+12+12=3|\vec{a}|=\sqrt{1^2+1^2+1^2}=\sqrt{3}
Therefore,the direction cosines of a\vec{a} are(13,13,13).(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}).
Now,let α,βα,β,and γγ be the angles formed by a\vec{a} with the positive directions x,yx,y,and zz axes.
Then,we have cosα=13,cosβ=13,cosγ=13.cosα=\frac{1}{\sqrt{3}},cosβ=\frac{1}{\sqrt{3}},cosγ=\frac{1}{\sqrt{3}}.
Hence,the given vector is equally inclined to axes OX,OY,and OZ.