Solveeit Logo

Question

Question: Show that the three lines with direction cosines \(\dfrac{12}{13}\dfrac{-3}{13},\dfrac{-4}{13};\dfra...

Show that the three lines with direction cosines 1213313,413;413,1213,313;313,413,1213\dfrac{12}{13}\dfrac{-3}{13},\dfrac{-4}{13};\dfrac{4}{13},\dfrac{12}{13},\dfrac{3}{13};\dfrac{3}{13},\dfrac{-4}{13},\dfrac{12}{13} are mutually perpendicular.

Explanation

Solution

We will be using the basic concept of vectors and 3-D geometry to solve the problem. We will be using the method of finding angles between two lines in 3-D to further simplify the problem.

Complete step by step answer:
We know that the angle between two lines in 3-D is,
cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22.............(1)\cos \theta =\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}.............\left( 1 \right)
Where a1,b1,c1 and a2,b2,c2{{a}_{1}},{{b}_{1}},{{c}_{1}}\ and\ {{a}_{2}},{{b}_{2}},{{c}_{2}} are the direction ratios of two lines.
Now, we have to show three lines to be mutually perpendicular.
Let, first line be L1{{L}_{1}} having direction cosines as,
l1=1213,m1=313,n1=413{{l}_{1}}=\dfrac{12}{13},{{m}_{1}}=\dfrac{-3}{13},{{n}_{1}}=\dfrac{-4}{13}
Second line be L2{{L}_{2}} having direction cosines as,
l2=413,m2=1213,n2=313{{l}_{2}}=\dfrac{4}{13},{{m}_{2}}=\dfrac{12}{13},{{n}_{2}}=\dfrac{3}{13}
Third line be L3{{L}_{3}} having direction cosines as,
l2=413,m2=1213,n2=313{{l}_{2}}=\dfrac{4}{13},{{m}_{2}}=\dfrac{12}{13},{{n}_{2}}=\dfrac{3}{13}
Now, from equation (1) we can see that for two lines to be perpendicular, θ\theta show be 9090{}^\circ therefore,
cos90=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22=0 a1a2+b1b2+c1c2=0 \begin{aligned} & \cos 90=\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}=0 \\\ & {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0 \\\ \end{aligned}
Now, we take L1 & L2{{L}_{1}}\ \And \ {{L}_{2}} and will find the value of l1l2+m1m2+n1n2{{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}. So,
l1l2+m1m2+n1n2=1213(413)+(313)1213+413(313) =481693616912169 =4848169 =0 \begin{aligned} & {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=\dfrac{12}{13}\left( \dfrac{4}{13} \right)+\left( \dfrac{-3}{13} \right)\dfrac{12}{13}+\dfrac{-4}{13}\left( \dfrac{3}{13} \right) \\\ & =\dfrac{48}{169}-\dfrac{36}{169}-\dfrac{12}{169} \\\ & =\dfrac{48-48}{169} \\\ & =0 \\\ \end{aligned}
Hence, L1 & L2{{L}_{1}}\ \And \ {{L}_{2}} are perpendicular. Similarly we have to do for L2,L3 & L3,L1{{L}_{2}},{{L}_{3}}\ \And \ {{L}_{3}},{{L}_{1}}.
Now, we will repeat the same process for L2,L3{{L}_{2}},{{L}_{3}}.
l2l3+m2m3+n2n3=413(313)+1213(413)+313(1213) =1216948169+36169 =4848169 =0 \begin{aligned} & {{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}=\dfrac{4}{13}\left( \dfrac{3}{13} \right)+\dfrac{12}{13}\left( \dfrac{-4}{13} \right)+\dfrac{3}{13}\left( \dfrac{12}{13} \right) \\\ & =\dfrac{12}{169}-\dfrac{48}{169}+\dfrac{36}{169} \\\ & =\dfrac{48-48}{169} \\\ & =0 \\\ \end{aligned}
Hence, L2,L3{{L}_{2}},{{L}_{3}}are perpendicular. Now, for L3,L1{{L}_{3}},{{L}_{1}}.
l1l3+m1m3+n1n3=1213(313)+(313)(413)+(413)1213 =36169+1216948169 =4848169 =0 \begin{aligned} & {{l}_{1}}{{l}_{3}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}{{n}_{3}}=\dfrac{12}{13}\left( \dfrac{3}{13} \right)+\left( \dfrac{-3}{13} \right)\left( \dfrac{-4}{13} \right)+\left( \dfrac{-4}{13} \right)\dfrac{12}{13} \\\ & =\dfrac{36}{169}+\dfrac{12}{169}-\dfrac{48}{169} \\\ & =\dfrac{48-48}{169} \\\ & =0 \\\ \end{aligned}
Hence, L3,L1{{L}_{3}},{{L}_{1}} are also perpendicular. Since, L1,L2;L2,L3;L3,L1{{L}_{1}},{{L}_{2}};{{L}_{2}},{{L}_{3}};{{L}_{3}},{{L}_{1}} are perpendicular this shows that L1,L2,L3{{L}_{1}},{{L}_{2}},{{L}_{3}} are mutually perpendicular or the three lines with given direction cosines are mutually perpendicular.

Note: These type of question can be easily solved if the formula to find angle between true lines is remembered that is,
cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\cos \theta =\dfrac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}+{{c}_{1}}^{2}}\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}+{{c}_{2}}^{2}}}
Where a1,b1,c1 and a2,b2,c2{{a}_{1}},{{b}_{1}},{{c}_{1}}\ and\ {{a}_{2}},{{b}_{2}},{{c}_{2}} are the direction cosines.