Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Show that the three lines with direction cosines
1213\frac{12}{13},313-\frac{3}{13},413-\frac{4}{13} ; 413\frac{4}{13},1213\frac{12}{13},313\frac{3}{13};313\frac{3}{13},413-\frac{4}{13},1213\frac{12}{13} are mutually perpendicular.

Answer

Two lines with direction cosines l1, m1, n1 and l2, m2, n2 are perpendicular to each other, if l1l2+m1m2+n1n2=0

(i)For the lines with direction cosines, 1213\frac{12}{13}, 313-\frac{3}{13}, 413-\frac{4}{13} and 413\frac{4}{13}, 1213\frac{12}{13}, 313\frac{3}{13}, we obtain
l1l2+m1m2+n1n2
=1213\frac{12}{13}×413\frac{4}{13}+(313-\frac{3}{13}1213\frac{12}{13}+(413-\frac{4}{13}313\frac{3}{13}
=48169\frac{48}{169}-36169\frac{36}{169}-12169\frac{12}{169}
=0

Thus, all the lines are mutually perpendicular.