Solveeit Logo

Question

Mathematics Question on Relations and Functions

Show that the Signum Function f: R\toR, given by

f(x)={1,if x >0 0,if n =0 1,if x <0f(x) = \begin{cases} 1, & \quad \text{if } x \text{ >0}\\\ 0, & \quad \text{if } n \text{ =0}\\\ -1, & \quad \text{if } x \text{ <0} \end{cases}

is neither one-one nor onto.

Answer

f: R \to R is given by,
f(x)={1,if x >0 0,if n =0 1,if x <0f(x) = \begin{cases} 1, & \quad \text{if } x \text{ >0}\\\ 0, & \quad \text{if } n \text{ =0}\\\ -1, & \quad \text{if } x \text{ <0} \end{cases}
It is seen that f(1) = f(2) = 1, but 1 ≠ 2.
∴f is not one-one.
Now, as f(x) takes only 3 values (1, 0, or −1) for the element −2 in co-domain R, there does not exist any x in domain R such that f(x) = −2.
∴ f is not onto.

Hence, the signum function is neither one-one nor onto.