Question
Mathematics Question on Applications of Derivatives
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is tan−12.
Let θ be the semi-vertical angle of the cone.
It is clear that θ$$∈[0,\frac{\pi}{2}].
Letr,h, and l be the radius,height,and the slant height of the cone respectively.
The slant height of the cone is given as constant.
Now,r=lsinθ and h=lcosθ
The volume(V)of the cone is given by,
V=31πr2h
=31π(l2sin2θ)(lcosθ)
=31πl2sin2θcosθ
∴\frac{dV}{dθ}$$=l^{3}\frac{\pi}{3}$$[sin^{2}θ(-sinθ)+cosθ(2sinθcosθ)]
=3l3π[−sin3+2sinθcos2θ]
dθd2V==\frac{l^{3}\pi}{3}$$[-3sin^{2}θcosθ+2cos^{3}θ-4sin^{2}θcosθ]
=\frac{l^{3}\pi}{3}$$[2cos^{3}θ-7sin^{2}θcosθ]
Now,dθdV=0
⇒sin3θ=2sinθcos2θ
⇒tan2θ=2
⇒tanθ=2
⇒θ=tan−12
Now,when ⇒θ=tan−12,then tan2θ=2 or sin2θ=2cos2θ.
Then,we have:
dθd2V==\frac{l^{3}\pi}{3}$$[2cos^{3}θ-14cos^{3}θ]$$=-4\pi l^{3}cos^{3}θ<0 for θ∈[0,\frac{\pi}{2}]
By second derivative test,the volume(V)is the maximum when θ=tan−12
Hence,for a given slant height,the semi-vertical angle of the cone of the maximum
volume is tan−12