Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is tan12.tan^{-1}\sqrt{2}.

Answer

Let θθ be the semi-vertical angle of the cone.

It is clear that θ$$∈[0,\frac{\pi}{2}].

Letr,h r,h, and l be the radius,height,and the slant height of the cone respectively.

The slant height of the cone is given as constant.

Now,r=lsinθ,r=lsin θ and h=lcosθh=lcos θ

The volume(V)(V)of the cone is given by,

V=13πr2hV=\frac{1}{3}\pi r^{2}h

=13π(l2sin2θ)(lcosθ)=\frac{1}{3}\pi (l^{2}sin^{2}θ)(lcosθ)

=13πl2sin2θcosθ=\frac{1}{3}\pi l^{2}sin^{2}θcosθ

∴\frac{dV}{dθ}$$=l^{3}\frac{\pi}{3}$$[sin^{2}θ(-sinθ)+cosθ(2sinθcosθ)]

=l3π3[sin3+2sinθcos2θ]=\frac{l^{3}\pi}{3}[-sin^{3}+2sinθcos^{2}θ]

d2Vdθ\frac{d^{2}V}{dθ}==\frac{l^{3}\pi}{3}$$[-3sin^{2}θcosθ+2cos^{3}θ-4sin^{2}θcosθ]

=\frac{l^{3}\pi}{3}$$[2cos^{3}θ-7sin^{2}θcosθ]

Now,dVdθ=0\frac{dV}{dθ}=0

sin3θ=2sinθcos2θ⇒sin^{3}θ=2sinθcos^{2}θ

tan2θ=2⇒tan^{2}θ=2

tanθ=2⇒tanθ=\sqrt{2}

θ=tan12⇒θ=tan^{-1}\sqrt{2}

Now,when θ=tan12⇒θ=tan^{-1}\sqrt{2},then tan2θ=2tan^{2}θ=2 or sin2θ=2cos2θ.sin^{2}θ=2cos^{2}θ.

Then,we have:

d2Vdθ\frac{d^{2}V}{dθ}==\frac{l^{3}\pi}{3}$$[2cos^{3}θ-14cos^{3}θ]$$=-4\pi l^{3}cos^{3}θ<0 for θ∈[0,\frac{\pi}{2}]

By second derivative test,the volume(V)is the maximum when θ=tan12 θ=tan^{-1}\sqrt{2}

Hence,for a given slant height,the semi-vertical angle of the cone of the maximum

volume is tan12tan^{-1}\sqrt{2}