Solveeit Logo

Question

Mathematics Question on Vector Algebra

Show that the points A,B,A, B, and CC with position vectors, a=3i^4j^4k^,b=2i^j^+k^\vec{a}=3\hat{i}-4\hat{j}-4\hat{k}, \vec{b}=2\hat{i}-\hat{j}+\hat{k} and c=i^3j^5k^\vec{c}=\hat{i}-3\hat{j}-5\hat{k}, respectively from the vertices of a right angled triangle.

Answer

Position vectors of A,BA,B,and CC are respectively given as:
a=3i^4j^4k^,b=2i^j^+k^\vec{a}=3\hat{i}-4\hat{j}-4\hat{k}, \vec{b}=2\hat{i}-\hat{j}+\hat{k},c=i^3j^5k^\vec{c}=\hat{i}-3\hat{j}-5\hat{k}
AB=ba=(23)i^+(1+4)j^+(1+4)k^=i^+3j^+5k^∴\vec{AB}=\vec{b}-\vec{a}=(2-3)\hat{i}+(-1+4)\hat{j}+(1+4)\hat{k}=-\hat{i}+3\hat{j}+5\hat{k}
BC=cb=(12)i^+(3+1)j^+(51)k^=i^2j^6k^\vec{BC}=\vec{c}-\vec{b}=(1-2)\hat{i}+(-3+1)\hat{j}+(-5-1)\hat{k}=-\hat{i}-2\hat{j}-6\hat{k}
CA=ac=(31)i^+(4+3)j^+(4+5)k^=2i^j^+k^\vec{CA}=\vec{a}-\vec{c}=(3-1)\hat{i}+(-4+3)\hat{j}+(-4+5)\hat{k}=2\hat{i}-\hat{j}+\hat{k}
AB2=(1)2+32+52=1+9+25=35∴|\vec{AB}|^2=(-1)^2+3^2+5^2=1+9+25=35
BC2=(1)2+(2)2+(6)2=1+4+36=41|\vec{BC}|^2=(-1)^2+(-2)^2+(-6)^2=1+4+36=41
CA2=22+(1)2+12=4+1+1=6|\vec{CA}|^2=2^2+(-1)^2+1^2=4+1+1=6
AB2+CA2=36+6=41=BC2∴|\vec{AB}|^2+|\vec{CA}|^2=36+6=41=|\vec{BC}|^2
Hence,ABC is a right angled triangle.