Question
Mathematics Question on Vector Algebra
Show that the points A,B, and C with position vectors, a=3i^−4j^−4k^,b=2i^−j^+k^ and c=i^−3j^−5k^, respectively from the vertices of a right angled triangle.
Answer
Position vectors of A,B,and C are respectively given as:
a=3i^−4j^−4k^,b=2i^−j^+k^,c=i^−3j^−5k^
∴AB=b−a=(2−3)i^+(−1+4)j^+(1+4)k^=−i^+3j^+5k^
BC=c−b=(1−2)i^+(−3+1)j^+(−5−1)k^=−i^−2j^−6k^
CA=a−c=(3−1)i^+(−4+3)j^+(−4+5)k^=2i^−j^+k^
∴∣AB∣2=(−1)2+32+52=1+9+25=35
∣BC∣2=(−1)2+(−2)2+(−6)2=1+4+36=41
∣CA∣2=22+(−1)2+12=4+1+1=6
∴∣AB∣2+∣CA∣2=36+6=41=∣BC∣2
Hence,ABC is a right angled triangle.