Solveeit Logo

Question

Question: Show that the points (a, a), (-a, -a) and \(\left( { - a\sqrt 3 ,a\sqrt 3 } \right)\) form an equila...

Show that the points (a, a), (-a, -a) and (a3,a3)\left( { - a\sqrt 3 ,a\sqrt 3 } \right) form an equilateral triangle.

Explanation

Solution

Hint: In this question use the distance formula that is d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} for any two pair of points(x1,y1) and (x2,y2)\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right), and prove that all the sides are of equal length.

Complete step-by-step answer:

The coordinates of the triangle is
A = (a, a) = (x1, y1)
B = (-a, -a) = (x2, y2)
C = (a3,a3- a\sqrt 3 ,a\sqrt 3) = (x3, y3)

Proof –
As we know if these coordinates form the equilateral triangle then the length of all sides should be equal.
Now as we know that the distance between two points is calculate as
d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} So use this property to calculate the length of the sides.
So calculate the sides AB , BC and CA.
AB=(x2x1)2+(y2y1)2=(aa)2+(aa)2=4a2+4a2=2a2\Rightarrow AB = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = \sqrt {{{\left( { - a - a} \right)}^2} + {{\left( { - a - a} \right)}^2}} = \sqrt {4{a^2} + 4{a^2}} = 2a\sqrt 2 Units.

Now calculate the distance BC
BC=(x3x2)2+(y3y2)2=(a3+a)2+(a3+a)2\Rightarrow BC = \sqrt {{{\left( {{x_3} - {x_2}} \right)}^2} + {{\left( {{y_3} - {y_2}} \right)}^2}} = \sqrt {{{\left( { - a\sqrt 3 + a} \right)}^2} + {{\left( {a\sqrt 3 + a} \right)}^2}}
Now expand the square according to property (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab we have,
BC=(a3+a)2+(a3+a)2=3a2+a22a23+3a2+a2+2a23\Rightarrow BC = \sqrt {{{\left( { - a\sqrt 3 + a} \right)}^2} + {{\left( {a\sqrt 3 + a} \right)}^2}} = \sqrt {3{a^2} + {a^2} - 2{a^2}\sqrt 3 + 3{a^2} + {a^2} + 2{a^2}\sqrt 3 }

Now simplify the above equation we have,
BC=3a2+a22a23+3a2+a2+2a23=8a2=2a2\Rightarrow BC = \sqrt {3{a^2} + {a^2} - 2{a^2}\sqrt 3 + 3{a^2} + {a^2} + 2{a^2}\sqrt 3 } = \sqrt {8{a^2}} = 2a\sqrt 2 Units.
Now calculate the distance CA
CA=(x3x1)2+(y3y1)2=(a3a)2+(a3a)2\Rightarrow CA = \sqrt {{{\left( {{x_3} - {x_1}} \right)}^2} + {{\left( {{y_3} - {y_1}} \right)}^2}} = \sqrt {{{\left( { - a\sqrt 3 - a} \right)}^2} + {{\left( {a\sqrt 3 - a} \right)}^2}}
Now expand the square according to property (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab we have,
CA=(a3a)2+(a3a)2=3a2+a2+2a23+3a2+a22a23\Rightarrow CA = \sqrt {{{\left( { - a\sqrt 3 - a} \right)}^2} + {{\left( {a\sqrt 3 - a} \right)}^2}} = \sqrt {3{a^2} + {a^2} + 2{a^2}\sqrt 3 + 3{a^2} + {a^2} - 2{a^2}\sqrt 3 }
Now simplify the above equation we have,
CA=3a2+a2+2a23+3a2+a22a23=8a2=2a2\Rightarrow CA = \sqrt {3{a^2} + {a^2} + 2{a^2}\sqrt 3 + 3{a^2} + {a^2} - 2{a^2}\sqrt 3 } = \sqrt {8{a^2}} = 2a\sqrt 2 Units.
So as we see that all the distances of the sides are equal so the given coordinates form an equilateral triangle.

Hence Proved.

Note: An equilateral triangle is one in which all the three sides are equal, an equilateral triangle is also equiangular that is all the 3 internal angles are congruent to each other and are equal to each other as 600{60^0}. It is advised to remember the distance formula as it helps save a lot of time while solving such problems.