Solveeit Logo

Question

Mathematics Question on Vector Algebra

Show that the points A(1,2,7),B(2,6,3)A(1,2,7),B(2,6,3),and C(3,10,1)C(3,10,-1) are collinear.

Answer

The given points are A(1,2,7),B(2,6,3),and  C(3,10,1).A(1,2,7),B(2,6,3),and \space C(3,10,-1).
AB=(21)i^+(62)j^+(37)k^=i^+4j^4k^∴\overrightarrow{AB}=(2-1)\hat{i}+(6-2)\hat{j}+(3-7)\hat{k}=\hat{i}+4\hat{j}-4\hat{k}
BC=(32)i^+(106)j^+(13)k^=i^+4j^4k^\overrightarrow{BC}=(3-2)\hat{i}+(10-6)\hat{j}+(-1-3)\hat{k}=\hat{i}+4\hat{j}-4\hat{k}
AC=(31)i^+(102)j^+(17)k^=2i^+8j^8k^\overrightarrow{AC}=(3-1)\hat{i}+(10-2)\hat{j}+(-1-7)\hat{k}=2\hat{i}+8\hat{j}-8\hat{k}
AB=12+42+(4)2=1+16+16=33|\overrightarrow{AB}|=\sqrt{1^{2}+4^{2}+(-4)^{2}}=\sqrt{1+16+16}=\sqrt{33}
BC=12+42+(4)2=1+16+16=33|\overrightarrow{BC}|=\sqrt{1^{2}+4^{2}+(-4)^{2}}=\sqrt{1+16+16}=\sqrt{33}
AC=22+82+82=4+64+64=132=233|\overrightarrow{AC}|=\sqrt{2^{2}+8^{2}+8^{2}}=\sqrt{4+64+64}=\sqrt{132}=2\sqrt{33}
AB=AB+BC∴|\overrightarrow{AB}|=|\overrightarrow{AB}|+|\overrightarrow{BC}|
Hence,the given points A,B,and  CA,B,and \space C are collinear.