Solveeit Logo

Question

Mathematics Question on Vector Algebra

Show that the points A(1,-2,-8),B(5,0,-2),and C(11,3,7)are collinear,and find the ratio with B devides AC.

Answer

The given points are A(1,-2,-8),B(5,0,-2),and C(11,3,7).
AB\vec{AB}=(5-1)i^\hat{i}+(0+2)j^\hat{j}+(-2+8)k^\hat{k}=4i^\hat{i}+2j^\hat{j}+6k^\hat{k}
BC\vec{BC}=(11-5)i^\hat{i}+(3-0)j^\hat{j}+(7+2)k^\hat{k}=6i^\hat{i}+3j^\hat{j}+9k^\hat{k}
AC\vec{AC}=(11-1)i^\hat{i}+(3+2)j^\hat{j}+(7+8)k^\hat{k}=10i^\hat{i}+5j^\hat{j}+15k^\hat{k}
|AB\vec{AB}|=42+22+62\sqrt{42+22+62} =16+4+36\sqrt{16+4+36}=56\sqrt{56}=2142\sqrt{14}
|BC\vec{BC}|=62+32+92\sqrt{62+32+92} =36+9+81\sqrt{36+9+81}=126\sqrt{126}=3143\sqrt{14}
|AC\vec{AC}|=102+52+152\sqrt{102+52+152} =100+25+225\sqrt{100+25+225}=350\sqrt{350}=5145\sqrt{14}
∴|AC\vec{AC}|=|AB\vec{AB}|+|BC\vec{BC}|
Thus,the given points A,B,and C are collinear.
Now,let point B devide Ac in the ratio λ:1.Then,we have:
OB\vec{OB}=\lambda$$\vec{OC}+OA(λ+1)\frac{\vec{OA}}{(\lambda+1)}
\Rightarrow5i^\hat{i}-2k^\hat{k}=λ(11i^+3j^+7k^)+(i^2j^8k^)λ+1\frac{\lambda(11\hat{i}+3\hat j+7\hat k)+(\hat i-2\hat j-8\hat k)}{\lambda +1}
\Rightarrow(λ+1)(i^\hat{i}-2k^\hat{k})=11λi^\hat{i}+3λj^\hat{j}+7λk^\hat{k}+i^\hat{i}-2j^\hat{j}-8k^\hat{k}
\Rightarrow5(λ+1)i^\hat{i}-2(λ+1)k^\hat{k}=(11λ+1)i^\hat{i}+(3λ-2)j^\hat{j}+(7λ-8)k^\hat{k}
On equating the corresponding components,we get:
\Rightarrow5(λ+1)=11λ+1
\Rightarrow5λ+5=11λ+1
\Rightarrow6λ=4
\Rightarrowλ=46\frac{4}{6}=23\frac{2}{3}
Hence,point B devides AC in ratio 2:3.