Question
Mathematics Question on Vector Algebra
Show that the points A(1,-2,-8),B(5,0,-2),and C(11,3,7)are collinear,and find the ratio with B devides AC.
The given points are A(1,-2,-8),B(5,0,-2),and C(11,3,7).
∴AB=(5-1)i^+(0+2)j^+(-2+8)k^=4i^+2j^+6k^
BC=(11-5)i^+(3-0)j^+(7+2)k^=6i^+3j^+9k^
AC=(11-1)i^+(3+2)j^+(7+8)k^=10i^+5j^+15k^
|AB|=42+22+62 =16+4+36=56=214
|BC|=62+32+92 =36+9+81=126=314
|AC|=102+52+152 =100+25+225=350=514
∴|AC|=|AB|+|BC|
Thus,the given points A,B,and C are collinear.
Now,let point B devide Ac in the ratio λ:1.Then,we have:
OB=\lambda$$\vec{OC}+(λ+1)OA
⇒5i^-2k^=λ+1λ(11i^+3j^+7k^)+(i^−2j^−8k^)
⇒(λ+1)(i^-2k^)=11λi^+3λj^+7λk^+i^-2j^-8k^
⇒5(λ+1)i^-2(λ+1)k^=(11λ+1)i^+(3λ-2)j^+(7λ-8)k^
On equating the corresponding components,we get:
⇒5(λ+1)=11λ+1
⇒5λ+5=11λ+1
⇒6λ=4
⇒λ=64=32
Hence,point B devides AC in ratio 2:3.