Question
Mathematics Question on distance between two points
Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
Answer
Let points (-2, 3, 5), (1, 2, 3), and (7, 0, -1) be denoted by P, Q, and R respectively.
Points P, Q, and R are collinear if they lie on a line.
PQ=(1+2)2+(2−3)2+(3−5)2
= (3)2+(−1)2+(−2)2
= 9+1+4
=14
QR = (7−1)2+(0−2)2+(−1−3)2
= (6)2+(−2)2+(−4)2
=36+4+16
= 56 =214
PR = (7+2)2+(0−3)2+(−1−5)2
= (9)2+(−3)2+(−6)2
= 81+9+36
= 126
= 314
Here, PQ+ QR = 14+214 = 314
Hence, points P(-2, 3, 5), Q(1, 2, 3), and R(7, 0, -1) are collinear.