Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Show that the normal at any point θ to the curve x=acosθ+aθsinθ,y=asinθaθcosθx=acosθ+aθsinθ,y=asinθ-aθcosθ is at a constant distance from the origin.

Answer

We have x=acosθ+aθsinθ
dxdθ=asinθ+asinθ+aθcosθ=aθcosθ∴\frac{dx}{dθ}=-asinθ+asinθ+aθcosθ=aθcosθ
y=asinθaθcosθy=asinθ-aθcosθ
\frac{dy}{dθ}$$=acosθ-acosθ+aθsinθ=aθsinθ
dydx\frac{dy}{dx}=dydθ\frac{dy}{dθ} . dθdx\frac{dθ}{dx}=aθsinθaθcosθ\frac{aθsinθ}{aθcosθ}=tanθ

∴ Slope of the normal at any point θ is -1tanθ\frac{1}{tanθ}.
The equation of the normal at a given point (x,y) is given by,
yasinθ+aθcosθ=y-asinθ+aθcosθ=-\frac{1}{tanθ}$$(x-acosθ-aθsinθ)
ysinθasin2θ+aθsinθcosθ=xcosθ+acos2θ+aθsinθcosθ⇒ysinθ-asin^2θ+aθsinθcosθ=-xcosθ+acos^2θ+aθsinθcosθ
xcosθ+ysinθa(sin2θ+cos2θ)=0⇒xcosθ+ysinθ-a(sin^2θ+cos^2θ)=0
xcosθ+ysinθa=0⇒xcosθ+ysinθ-a=0
Now, the perpendicular distance of the normal from the origin is
acos2θ+sin2θ\frac{|-a|}{\sqrt{cos^2θ+sin^2θ}} =a1=a,=\frac{|-a|}{\sqrt1}=|-a|, which is independent of θ.
Hence, the perpendicular distance of the normal from the origin is constant