Solveeit Logo

Question

Question: Show that the middle term in the expansion of \({\left( {1 + x} \right)^n}\)is \(6{x^2}\) if n = 4....

Show that the middle term in the expansion of (1+x)n{\left( {1 + x} \right)^n}is 6x26{x^2} if n = 4.

Explanation

Solution

Hint - There can be two methods to solve this problem, one is based upon the general formula of expansion of (1+x)n{\left( {1 + x} \right)^n} using the binomial expansion and the other one focuses on direct formula to find the middle term in expansion of (1+x)n{\left( {1 + x} \right)^n} depending upon whether n is even or odd.

Now let’s use the direct formula for finding the middle term in the expansion of (1+x)n{\left( {1 + x} \right)^n}.
Here n =4 (given in question)
Clearly n is even thus the middle term in expansion of (1+x)n{\left( {1 + x} \right)^n}is nCn2xn2^n{C_{\dfrac{n}{2}}}{x^{\dfrac{n}{2}}}……………… (1)
So let’s directly put the value of n in equation (1) we get
Middle term will be 4C42x42= 4C2x2^4{C_{\dfrac{4}{2}}}{x^{\dfrac{4}{2}}} = {{\text{ }}^4}{C_2}{x^2}………………….. (2)
Now The formula for nCr=n!r!(nr)!^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}…………………. (3)
Using equation three we get
4C2=4!2!(42)! 4!2!(2)!  ^4{C_2} = \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\\ \Rightarrow \dfrac{{4!}}{{2!\left( 2 \right)!}} \\\
Now n!=n(n1)(n2)(n3).........(nr)n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right).........\left( {n - r} \right) such that r<nr < n
Using this concept we get
4C2=4×3×2×12×1×2×1 6  ^4{C_2} = \dfrac{{4 \times 3 \times 2 \times 1}}{{2 \times 1 \times 2 \times 1}} \\\ \Rightarrow 6 \\\
Hence putting it in equation (2) we get
Middle term of (1+x)n{\left( {1 + x} \right)^n}is 6x26{x^2}

Note – Now let’s talk about a method in which we can use the entire expansion of (1+x)n{\left( {1 + x} \right)^n}using binomial theorem. The expansion of (1+x)n{\left( {1 + x} \right)^n}is1+nx+n(n1)2x2+n(n1)(n2)3!x3+............1 + nx + \dfrac{{n\left( {n - 1} \right)}}{2}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + ............\infty . Hence after completely expanding till the given value of n, find the middle term in that series, this will also give the right answer.