Solveeit Logo

Question

Question: Show that the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is \(\dfrac{{1.3.5...

Show that the middle term in the expansion of (1+x)2n  {\left( {1 + x} \right)^{2n}}\; is 1.3.5 (2n  1)×2n×xnn!\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}, where, nNn \in N.

Explanation

Solution

Hint- Combinations are a way to calculate the total outcomes of an event where the order of the outcomes does not matter. To calculate combinations, we will use the formula nCr=n!r!(nr)!n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}.
In this question, we need to show the middle term in the expansion of the function (1+x)2n  {\left( {1 + x} \right)^{2n}}\;is 1.3.5 (2n  1)×2n×xnn!\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}} for which we need to carry out the formula for the binomial expansion involving the combinations as well.

Complete step by step solution:
Consider the middle term in the expansion of (1+x)2n  {\left( {1 + x} \right)^{2n}}\; be tn + 1{t_{n{\text{ }} + {\text{ }}1}}

tn + 1=2nCn×1(2nn)×xn =(2n)!n!(2nn)!×xn  {t_{n{\text{ }} + {\text{ }}1}} = {}^{2n}{C_n} \times {1^{\left( {2n - n} \right)}} \times {x^n} \\\ = \dfrac{{(2n)!}}{{n!\left( {2n - n} \right)!}} \times {x^n} \\\

Here, we can expand the terms inside the factorials as:
tn+1=2n( 2n  1)( 2n  2)4×3×2×1n!(n)!×  xn{t_{n + 1}} = \dfrac{{2n\left( {{\text{ }}2n{\text{ }}-{\text{ }}1} \right)\left( {{\text{ }}2n{\text{ }}-{\text{ }}2} \right) \ldots \ldots \ldots 4 \times 3 \times 2 \times 1}}{{n!\left( n \right)!}} \times \;{x^n}
Now, the numerator can be seen as the product of the even terms and the odd terms so, segregate the even and odd terms as:

tn+1=2n[n(n1)(n2).. ×2×1][(2n3)3×1](n!)(n!)× xn =(2n1)(2n3).. 3×1n!×2n×xn =1.3.5 (2n  1)×2n×xnn!  {t_{n + 1}} = \dfrac{{{2^n}\left[ {n\left( {n - 1} \right)\left( {n - 2} \right) \ldots ..{\text{ }} \times 2 \times 1} \right]\left[ {\left( {2n - 3} \right) \ldots \ldots 3 \times 1} \right]}}{{(n!)(n!)}} \times {\text{ }}{x^n} \\\ = \dfrac{{\left( {2n - 1} \right)\left( {2n - 3} \right) \ldots ..{\text{ }}3 \times 1}}{{n!}} \times {2^n} \times {x^n} \\\ = \dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}} \\\

Hence, the middle term in the expansion of (1+x)2n  {\left( {1 + x} \right)^{2n}}\; is 1.3.5 (2n  1)×2n×xnn!\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}.

Note: Students must be aware while taking the common terms out of the functions. Alternatively, a short method to find the value of nCr{}^n{C_r} is nCr=n(n1)(n2).......(nr+1)r!n{C_r} = \dfrac{{n(n - 1)(n - 2).......(n - r + 1)}}{{r!}}.
The above trick can be easily proved by doing simple calculations in the original equation.