Solveeit Logo

Question

Question: Show that the locus of the poles of chords which subtend a constant angle a at the vertex is the cur...

Show that the locus of the poles of chords which subtend a constant angle a at the vertex is the curve,
(x+4a)2=4cot2a(y24ax){{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}a\left( {{y}^{2}}-4ax \right)
If the constant angle be a right angle the locus is a straight line perpendicular to the axis.

Explanation

Solution

This question can be solved by writing the equation of the chord joining two points on the parabola and using the formula of angle subtended by a chord on its vertex.
On the parabola y2=4ax{{y}^{2}}=4ax, a point can be assumed having coordinates (at2,2at)\left( a{{t}^{2}},2at \right) where ‘t’ is a parameter.

Complete step-by-step answer:
Let us assume two points on a parabola y2=4ax{{y}^{2}}=4ax A(at12,2at1) and B(at22,2at2)A\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ B\left( at_{2}^{2},2a{{t}_{2}} \right).
The equation of chord joining points (at12,2at1) and (at22,2at2)\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ \left( at_{2}^{2},2a{{t}_{2}} \right) has the equation,
(y2at2)=2at22at1at22at12×(xat22)\left( y-2a{{t}_{2}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\times \left( x-at_{2}^{2} \right)
Equation of a line joining two points (x1,y1) and (x2,y2)\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right) is (yy1)=(y2y1x2x1)(xx1)\left( y-{{y}_{1}} \right)=\left( \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \right)\left( x-{{x}_{1}} \right).
So, equation of the line joining A(at12,2at1) and B(at22,2at2)A\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ B\left( at_{2}^{2},2a{{t}_{2}} \right).
(y2at2)=2at22at1at22at12×(xat22) (y2at2)=2a(t2t1)a(t2t1)(t2+t1)×(xat22) (y2at2)=2t2+t1×(xat22) (y2at2)(t2+t1)=2(xat22) \begin{aligned} & \left( y-2a{{t}_{2}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\times \left( x-at_{2}^{2} \right) \\\ & \Rightarrow \left( y-2a{{t}_{2}} \right)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\times \left( x-at_{2}^{2} \right) \\\ & \Rightarrow \left( y-2a{{t}_{2}} \right)=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\times \left( x-at_{2}^{2} \right) \\\ & \Rightarrow \left( y-2a{{t}_{2}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{2}^{2} \right) \\\ \end{aligned}

Given the chord subtends angle ‘a’ at the vertex.
Angle between two lines is,
tana=m1m21+m1m2 where m1=slope of line OA m2=slope of line OB \begin{aligned} & \tan a=\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \\\ & where\ {{m}_{1}}=slope\ of\ line\ OA \\\ & {{m}_{2}}=slope\ of\ line\ OB \\\ \end{aligned}
Slope of line passing through points (x1,y1) and (x2,y2)=y2y1x2x1\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}
Slope of OA=2at120at120=2t1=m1 Slope of OB=2at220at220=2t2=m2 \begin{aligned} & Slope\ of\ OA=\dfrac{2at_{1}^{2}-0}{at_{1}^{2}-0}=\dfrac{2}{{{t}_{1}}}={{m}_{1}} \\\ & Slope\ of\ OB=\dfrac{2at_{2}^{2}-0}{at_{2}^{2}-0}=\dfrac{2}{{{t}_{2}}}={{m}_{2}} \\\ \end{aligned}
Comparing the equation yk=2ax+2ahyk=2ax+2ah with the equation of the chord, we have,
t1+t2k=22a=2at1t22ah...........(2)\dfrac{{{t}_{1}}+{{t}_{2}}}{k}=\dfrac{2}{2a}=\dfrac{2a{{t}_{1}}{{t}_{2}}}{2ah}...........\left( 2 \right)
From this equation,
h=at1t2 and k=a(t1+t2) \begin{aligned} & \Rightarrow h=a{{t}_{1}}{{t}_{2}}\ and \\\ & k=a\left( {{t}_{1}}+{{t}_{2}} \right) \\\ \end{aligned}
From equation (1) and (2),
t1t2=ha and (t1+t2)=ka Formula:(a+b)2(ab)2=4ab (t1+t2)2(t1t2)2=4t1t2 k2a24ha=(t1t2) \begin{aligned} & {{t}_{1}}{{t}_{2}}=\dfrac{h}{a}\ and\ \left( {{t}_{1}}+{{t}_{2}} \right)=\dfrac{k}{a} \\\ & Formula:{{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab \\\ & {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-{{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}=4{{t}_{1}}{{t}_{2}} \\\ & \Rightarrow \sqrt{\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a}}=\left( {{t}_{1}}-{{t}_{2}} \right) \\\ \end{aligned}
Equation (1) becomes,
2k2a24ha=tana×(4+ha)2\sqrt{\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a}}=\tan a\times \left( 4+\dfrac{h}{a} \right)
On squaring both sides,
4(k2a24ha)=tan2a(ha+4)2 4(k24aha2)=tan2a(h+4aa)2 4(k24ah)a2=tan2a(h+4a)2a2 4(k24ah)=tan2a(h+4a)2 \begin{aligned} & \Rightarrow 4\left( \dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a} \right)={{\tan }^{2}}a{{\left( \dfrac{h}{a}+4 \right)}^{2}} \\\ & \Rightarrow 4\left( \dfrac{{{k}^{2}}-4ah}{{{a}^{2}}} \right)={{\tan }^{2}}a{{\left( \dfrac{h+4a}{a} \right)}^{2}} \\\ & \Rightarrow \dfrac{4\left( {{k}^{2}}-4ah \right)}{{{a}^{2}}}={{\tan }^{2}}a\dfrac{{{\left( h+4a \right)}^{2}}}{{{a}^{2}}} \\\ & \Rightarrow 4\left( {{k}^{2}}-4ah \right)={{\tan }^{2}}a{{\left( h+4a \right)}^{2}} \\\ \end{aligned}
On replacing ‘h’ with ‘x’ and ‘k’ with ‘y’,
4(y24ax)=tan2a(x+4a)2 (x+4a)2=4tan2a(y24ax) (x+4a)2=4cot2a(y24ax) \begin{aligned} & 4\left( {{y}^{2}}-4ax \right)={{\tan }^{2}}a{{\left( x+4a \right)}^{2}} \\\ & \Rightarrow {{\left( x+4a \right)}^{2}}=\dfrac{4}{{{\tan }^{2}}a}\left( {{y}^{2}}-4ax \right) \\\ & \Rightarrow {{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}a\left( {{y}^{2}}-4ax \right) \\\ \end{aligned}
Hence, the required locus is: (x+4a)2=4cot2a(y24ax){{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}a\left( {{y}^{2}}-4ax \right)
If the constant angle is 9090{}^\circ , then
tana=tan90=Not defined cot90=0 \begin{aligned} & \tan a=\tan 90{}^\circ =Not\ defined \\\ & \Rightarrow \cot 90{}^\circ =0 \\\ \end{aligned}
So, the locus will be (x+4a)2=0{{\left( x+4a \right)}^{2}}=0
x+4a=0 x=4a \begin{aligned} & \Rightarrow x+4a=0 \\\ & \Rightarrow x=-4a \\\ \end{aligned}
This is a line perpendicular to the axis.
Hence, the locus will be a straight line perpendicular to the axis when the constant angle will be a right angle.

Note: This is a simple question in which we have to assume points on parabola in parametric form and obtain relation between the parameters from the given information in the question. Be careful while writing the parametric forms and solving the equations.