Solveeit Logo

Question

Question: Show that the locus of the incentre of the variable triangle $PF_2F_1$ is an ellipse whose eccentri...

Show that the locus of the incentre of the variable triangle PF2F1PF_2F_1 is an

ellipse whose eccentricity is 2e1+e\sqrt{\frac{2e}{1+e}} where ee is the eccentricity of standard

ellipse when PP moves on a standard ellipse.

Answer

ellipse whose eccentricity is 2e1+e\sqrt{\frac{2e}{1+e}}

Explanation

Solution

Let the standard ellipse be given by the equation x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, where aa is the semi-major axis and bb is the semi-minor axis. The eccentricity of this ellipse is ee, related by b2=a2(1e2)b^2 = a^2(1-e^2).

The foci of the ellipse are F1=(ae,0)F_1 = (ae, 0) and F2=(ae,0)F_2 = (-ae, 0). Let P=(acosθ,bsinθ)P = (a \cos \theta, b \sin \theta) be a point on the ellipse.

We are considering the triangle PF2F1PF_2F_1. The side lengths of this triangle are:

  1. PF1=r1=aaecosθPF_1 = r_1 = a - ae \cos \theta (distance from a point on the ellipse to the focus F1F_1)
  2. PF2=r2=a+aecosθPF_2 = r_2 = a + ae \cos \theta (distance from a point on the ellipse to the focus F2F_2)
  3. F1F2=2aeF_1F_2 = 2ae (distance between the foci)

The sum of the distances from PP to the foci is r1+r2=(aaecosθ)+(a+aecosθ)=2ar_1 + r_2 = (a - ae \cos \theta) + (a + ae \cos \theta) = 2a. The perimeter of the triangle PF2F1PF_2F_1 is S=r1+r2+F1F2=2a+2ae=2a(1+e)S = r_1 + r_2 + F_1F_2 = 2a + 2ae = 2a(1+e).

Let I=(h,k)I = (h, k) be the incenter of the triangle PF2F1PF_2F_1. The coordinates of the vertices are P(acosθ,bsinθ)P(a \cos \theta, b \sin \theta), F1(ae,0)F_1(ae, 0), and F2(ae,0)F_2(-ae, 0). Using the incenter formula (h,k)=(r2xF1+r1xF2+F1F2xPS,r2yF1+r1yF2+F1F2yPS)(h, k) = \left(\frac{r_2 x_{F_1} + r_1 x_{F_2} + F_1F_2 x_P}{S}, \frac{r_2 y_{F_1} + r_1 y_{F_2} + F_1F_2 y_P}{S}\right):

For the x-coordinate (hh): h=(a+aecosθ)(ae)+(aaecosθ)(ae)+(2ae)(acosθ)2a(1+e)h = \frac{(a + ae \cos \theta)(ae) + (a - ae \cos \theta)(-ae) + (2ae)(a \cos \theta)}{2a(1+e)} h=a2e+a2e2cosθa2e+a2e2cosθ+2a2ecosθ2a(1+e)h = \frac{a^2e + a^2e^2 \cos \theta - a^2e + a^2e^2 \cos \theta + 2a^2e \cos \theta}{2a(1+e)} h=2a2e2cosθ+2a2ecosθ2a(1+e)h = \frac{2a^2e^2 \cos \theta + 2a^2e \cos \theta}{2a(1+e)} h=2a2ecosθ(e+1)2a(1+e)h = \frac{2a^2e \cos \theta (e+1)}{2a(1+e)} h=aecosθh = ae \cos \theta

For the y-coordinate (kk): k=(a+aecosθ)(0)+(aaecosθ)(0)+(2ae)(bsinθ)2a(1+e)k = \frac{(a + ae \cos \theta)(0) + (a - ae \cos \theta)(0) + (2ae)(b \sin \theta)}{2a(1+e)} k=2aebsinθ2a(1+e)k = \frac{2aeb \sin \theta}{2a(1+e)} k=ebsinθ1+ek = \frac{eb \sin \theta}{1+e}

Now we have parametric equations for the locus of the incenter (h,k)(h, k):

  1. cosθ=hae\cos \theta = \frac{h}{ae}
  2. sinθ=k(1+e)eb\sin \theta = \frac{k(1+e)}{eb}

Using the identity cos2θ+sin2θ=1\cos^2 \theta + \sin^2 \theta = 1: (hae)2+(k(1+e)eb)2=1\left(\frac{h}{ae}\right)^2 + \left(\frac{k(1+e)}{eb}\right)^2 = 1 h2(ae)2+k2(eb1+e)2=1\frac{h^2}{(ae)^2} + \frac{k^2}{\left(\frac{eb}{1+e}\right)^2} = 1

This is the equation of an ellipse of the form x2A2+y2B2=1\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1, where the semi-axes are A=aeA = ae and B=eb1+eB = \frac{eb}{1+e}.

To find the eccentricity of this new ellipse, we need to determine which axis is the major axis. We compare A2A^2 and B2B^2: A2=(ae)2=a2e2A^2 = (ae)^2 = a^2e^2 B2=(eb1+e)2=e2b2(1+e)2B^2 = \left(\frac{eb}{1+e}\right)^2 = \frac{e^2b^2}{(1+e)^2} Substitute b2=a2(1e2)b^2 = a^2(1-e^2): B2=e2a2(1e2)(1+e)2B^2 = \frac{e^2a^2(1-e^2)}{(1+e)^2}

Now, compare A2A^2 and B2B^2: A2B2=a2e2e2a2(1e2)(1+e)2A^2 - B^2 = a^2e^2 - \frac{e^2a^2(1-e^2)}{(1+e)^2} A2B2=a2e2(11e2(1+e)2)A^2 - B^2 = a^2e^2 \left(1 - \frac{1-e^2}{(1+e)^2}\right) A2B2=a2e2((1+e)2(1e2)(1+e)2)A^2 - B^2 = a^2e^2 \left(\frac{(1+e)^2 - (1-e^2)}{(1+e)^2}\right) A2B2=a2e2(1+2e+e21+e2(1+e)2)A^2 - B^2 = a^2e^2 \left(\frac{1+2e+e^2 - 1+e^2}{(1+e)^2}\right) A2B2=a2e2(2e+2e2(1+e)2)A^2 - B^2 = a^2e^2 \left(\frac{2e+2e^2}{(1+e)^2}\right) A2B2=a2e2(2e(1+e)(1+e)2)A^2 - B^2 = a^2e^2 \left(\frac{2e(1+e)}{(1+e)^2}\right) A2B2=a2e2(2e1+e)A^2 - B^2 = a^2e^2 \left(\frac{2e}{1+e}\right)

Since 0<e<10 < e < 1, a2e2>0a^2e^2 > 0 and 2e1+e>0\frac{2e}{1+e} > 0. Therefore, A2B2>0A^2 - B^2 > 0, which means A>BA > B. So, the major axis of the new ellipse is along the x-axis, and its semi-major axis is A=aeA = ae, and its semi-minor axis is B=eb1+eB = \frac{eb}{1+e}.

The eccentricity of the new ellipse, let's call it ee', is given by e2=1B2A2e'^2 = 1 - \frac{B^2}{A^2}. e2=1e2b2(1+e)2a2e2e'^2 = 1 - \frac{\frac{e^2b^2}{(1+e)^2}}{a^2e^2} e2=1b2a2(1+e)2e'^2 = 1 - \frac{b^2}{a^2(1+e)^2} Substitute b2=a2(1e2)b^2 = a^2(1-e^2): e2=1a2(1e2)a2(1+e)2e'^2 = 1 - \frac{a^2(1-e^2)}{a^2(1+e)^2} e2=11e2(1+e)2e'^2 = 1 - \frac{1-e^2}{(1+e)^2} e2=(1+e)2(1e2)(1+e)2e'^2 = \frac{(1+e)^2 - (1-e^2)}{(1+e)^2} e2=1+2e+e21+e2(1+e)2e'^2 = \frac{1+2e+e^2 - 1+e^2}{(1+e)^2} e2=2e+2e2(1+e)2e'^2 = \frac{2e+2e^2}{(1+e)^2} e2=2e(1+e)(1+e)2e'^2 = \frac{2e(1+e)}{(1+e)^2} e2=2e1+ee'^2 = \frac{2e}{1+e}

Thus, the eccentricity of the locus of the incenter is e=2e1+ee' = \sqrt{\frac{2e}{1+e}}. The locus is an ellipse.