Question
Question: Show that the locus of the incentre of the variable triangle $PF_2F_1$ is an ellipse whose eccentri...
Show that the locus of the incentre of the variable triangle PF2F1 is an
ellipse whose eccentricity is 1+e2e where e is the eccentricity of standard
ellipse when P moves on a standard ellipse.

ellipse whose eccentricity is 1+e2e
Solution
Let the standard ellipse be given by the equation a2x2+b2y2=1, where a is the semi-major axis and b is the semi-minor axis. The eccentricity of this ellipse is e, related by b2=a2(1−e2).
The foci of the ellipse are F1=(ae,0) and F2=(−ae,0). Let P=(acosθ,bsinθ) be a point on the ellipse.
We are considering the triangle PF2F1. The side lengths of this triangle are:
- PF1=r1=a−aecosθ (distance from a point on the ellipse to the focus F1)
- PF2=r2=a+aecosθ (distance from a point on the ellipse to the focus F2)
- F1F2=2ae (distance between the foci)
The sum of the distances from P to the foci is r1+r2=(a−aecosθ)+(a+aecosθ)=2a. The perimeter of the triangle PF2F1 is S=r1+r2+F1F2=2a+2ae=2a(1+e).
Let I=(h,k) be the incenter of the triangle PF2F1. The coordinates of the vertices are P(acosθ,bsinθ), F1(ae,0), and F2(−ae,0). Using the incenter formula (h,k)=(Sr2xF1+r1xF2+F1F2xP,Sr2yF1+r1yF2+F1F2yP):
For the x-coordinate (h): h=2a(1+e)(a+aecosθ)(ae)+(a−aecosθ)(−ae)+(2ae)(acosθ) h=2a(1+e)a2e+a2e2cosθ−a2e+a2e2cosθ+2a2ecosθ h=2a(1+e)2a2e2cosθ+2a2ecosθ h=2a(1+e)2a2ecosθ(e+1) h=aecosθ
For the y-coordinate (k): k=2a(1+e)(a+aecosθ)(0)+(a−aecosθ)(0)+(2ae)(bsinθ) k=2a(1+e)2aebsinθ k=1+eebsinθ
Now we have parametric equations for the locus of the incenter (h,k):
- cosθ=aeh
- sinθ=ebk(1+e)
Using the identity cos2θ+sin2θ=1: (aeh)2+(ebk(1+e))2=1 (ae)2h2+(1+eeb)2k2=1
This is the equation of an ellipse of the form A2x2+B2y2=1, where the semi-axes are A=ae and B=1+eeb.
To find the eccentricity of this new ellipse, we need to determine which axis is the major axis. We compare A2 and B2: A2=(ae)2=a2e2 B2=(1+eeb)2=(1+e)2e2b2 Substitute b2=a2(1−e2): B2=(1+e)2e2a2(1−e2)
Now, compare A2 and B2: A2−B2=a2e2−(1+e)2e2a2(1−e2) A2−B2=a2e2(1−(1+e)21−e2) A2−B2=a2e2((1+e)2(1+e)2−(1−e2)) A2−B2=a2e2((1+e)21+2e+e2−1+e2) A2−B2=a2e2((1+e)22e+2e2) A2−B2=a2e2((1+e)22e(1+e)) A2−B2=a2e2(1+e2e)
Since 0<e<1, a2e2>0 and 1+e2e>0. Therefore, A2−B2>0, which means A>B. So, the major axis of the new ellipse is along the x-axis, and its semi-major axis is A=ae, and its semi-minor axis is B=1+eeb.
The eccentricity of the new ellipse, let's call it e′, is given by e′2=1−A2B2. e′2=1−a2e2(1+e)2e2b2 e′2=1−a2(1+e)2b2 Substitute b2=a2(1−e2): e′2=1−a2(1+e)2a2(1−e2) e′2=1−(1+e)21−e2 e′2=(1+e)2(1+e)2−(1−e2) e′2=(1+e)21+2e+e2−1+e2 e′2=(1+e)22e+2e2 e′2=(1+e)22e(1+e) e′2=1+e2e
Thus, the eccentricity of the locus of the incenter is e′=1+e2e. The locus is an ellipse.