Solveeit Logo

Question

Question: Show that the line \(y=mx\) bisects the angle between the lines \(a{{x}^{2}}-2hxy+b{{y}^{2}}=0\) if ...

Show that the line y=mxy=mx bisects the angle between the lines ax22hxy+by2=0a{{x}^{2}}-2hxy+b{{y}^{2}}=0 if h(1m2)+m(ab)=0h\left( 1-{{m}^{2}} \right)+m\left( a-b \right)=0 ?

Explanation

Solution

ax22hxy+by2=0a{{x}^{2}}-2hxy+b{{y}^{2}}=0is an equation which represents a pair of lines. So first we are going to assume two lines which represent the above equation with a definite slope for each line. One line will obviously have greater slope than the other. It is given that the line y=mxy=mxbisects the angle between these two lines. Using the slopes of these lines, we form an equation. Then we are going to apply tan\tan on both sides to get our desired result.

Complete step by step answer:
Now let us assume two lines which are represented by the equation ax2+2hxy+by2=0a{{x}^{2}}+2hxy+b{{y}^{2}}=0. Let them be ym1x=0y-{{m}_{1}}x=0 where m1=tanα{{m}_{1}}=\tan \alpha ,ym2x=0y-{{m}_{2}}x=0and m2=tanβ{{m}_{2}}=\tan \beta .
Let us assume that ym2x=0y-{{m}_{2}}x=0has greater slope than ym1x=0y-{{m}_{1}}x=0 which implies that β>α\beta >\alpha .
We can write it in the following way :
ax22hxy+by2=(ym1x)(ym2x)\Rightarrow a{{x}^{2}}-2hxy+b{{y}^{2}}=\left( y-{{m}_{1}}x \right)\left( y-{{m}_{2}}x \right).
Now let us multiply the line equation with each other and then compare.
Upon doing so, we get the following :
ax22hxy+by2=(ym1x)(ym2x) ax22hxy+by2=y2m2xym1xy+m1m2x2 ax22hxy+by2=y2xy(m1+m2)+m1m2x2 abx22hbxy+y2=y2xy(m1+m2)+m1m2x2 \begin{aligned} & \Rightarrow a{{x}^{2}}-2hxy+b{{y}^{2}}=\left( y-{{m}_{1}}x \right)\left( y-{{m}_{2}}x \right) \\\ & \Rightarrow a{{x}^{2}}-2hxy+b{{y}^{2}}={{y}^{2}}-{{m}_{2}}xy-{{m}_{1}}xy+{{m}_{1}}{{m}_{2}}{{x}^{2}} \\\ & \Rightarrow a{{x}^{2}}-2hxy+b{{y}^{2}}={{y}^{2}}-xy\left( {{m}_{1}}+{{m}_{2}} \right)+{{m}_{1}}{{m}_{2}}{{x}^{2}} \\\ & \Rightarrow \dfrac{a}{b}{{x}^{2}}-\dfrac{2h}{b}xy+{{y}^{2}}={{y}^{2}}-xy\left( {{m}_{1}}+{{m}_{2}} \right)+{{m}_{1}}{{m}_{2}}{{x}^{2}} \\\ \end{aligned}
Let us first compare the x2{{x}^{2}} terms.
Upon doing so, we get the following :
ab=m1m2\Rightarrow \dfrac{a}{b}={{m}_{1}}{{m}_{2}}
Now let us compare the xyxy terms.
Upon doing so, we get the following :
2hb=m1+m2\Rightarrow \dfrac{2h}{b}={{m}_{1}}+{{m}_{2}}
Let us assume the slope of line y=mxy=mxto be θ\theta . Let us draw these graphs for clarity.

From the figure, the following can deduced :
θα=βθ\Rightarrow \theta -\alpha =\beta -\theta since y=mxy=mx bisected the angle between these two lines. So these two have to be equal .
Now let us group the θs\theta s and apply tan\tan on both sides.
Upon doing so, we get the following :
θα=βθ 2θ=α+β tan(2θ)=tan(α+β) \begin{aligned} & \Rightarrow \theta -\alpha =\beta -\theta \\\ & \Rightarrow 2\theta =\alpha +\beta \\\ & \Rightarrow \tan \left( 2\theta \right)=\tan \left( \alpha +\beta \right) \\\ \end{aligned}
Now let us apply the formulae and expand and use the results that we got above.
θα=βθ 2θ=α+β tan(2θ)=tan(α+β) 2tanθ1tan2θ=tanα+tanβ1tanαtanβ \begin{aligned} & \Rightarrow \theta -\alpha =\beta -\theta \\\ & \Rightarrow 2\theta =\alpha +\beta \\\ & \Rightarrow \tan \left( 2\theta \right)=\tan \left( \alpha +\beta \right) \\\ & \Rightarrow \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }=\dfrac{tan\alpha +\tan \beta }{1-\tan \alpha \tan \beta } \\\ \end{aligned}
tanβ,tanα,tanθ\tan \beta ,\tan \alpha ,\tan \theta are the slopes of the lines ym2x=0,ym1x=0,ymx=0y-{{m}_{2}}x=0,y-{{m}_{1}}x=0,y-mx=0 respectively.
So let us substitute tanβ\tan \beta with m2{{m}_{2}}, tanα\tan \alpha with m{{m}_{{}}}and tanθ\tan \theta with mm.
Upon doing so, we get the following :
θα=βθ 2θ=α+β tan(2θ)=tan(α+β) 2tanθ1tan2θ=tanα+tanβ1tanαtanβ 2m1m2=m1+m21m1m2 \begin{aligned} & \Rightarrow \theta -\alpha =\beta -\theta \\\ & \Rightarrow 2\theta =\alpha +\beta \\\ & \Rightarrow \tan \left( 2\theta \right)=\tan \left( \alpha +\beta \right) \\\ & \Rightarrow \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }=\dfrac{tan\alpha +\tan \beta }{1-\tan \alpha \tan \beta } \\\ & \Rightarrow \dfrac{2m}{1-{{m}^{2}}}=\dfrac{{{m}_{1}}+{{m}_{2}}}{1-{{m}_{1}}{{m}_{2}}} \\\ \end{aligned}
From above results, we know that ab=m1m2\dfrac{a}{b}={{m}_{1}}{{m}_{2}},2hb=m1+m2\dfrac{2h}{b}={{m}_{1}}+{{m}_{2}}.
Let us substitute them and solve further.
θα=βθ 2θ=α+β tan(2θ)=tan(α+β) 2tanθ1tan2θ=tanα+tanβ1tanαtanβ 2m1m2=m1+m21m1m2 2m1m2=2hb1ab 2m1m2=2hba \begin{aligned} & \Rightarrow \theta -\alpha =\beta -\theta \\\ & \Rightarrow 2\theta =\alpha +\beta \\\ & \Rightarrow \tan \left( 2\theta \right)=\tan \left( \alpha +\beta \right) \\\ & \Rightarrow \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }=\dfrac{tan\alpha +\tan \beta }{1-\tan \alpha \tan \beta } \\\ & \Rightarrow \dfrac{2m}{1-{{m}^{2}}}=\dfrac{{{m}_{1}}+{{m}_{2}}}{1-{{m}_{1}}{{m}_{2}}} \\\ & \Rightarrow \dfrac{2m}{1-{{m}^{2}}}=\dfrac{\dfrac{2h}{b}}{1-\dfrac{a}{b}} \\\ & \Rightarrow \dfrac{2m}{1-{{m}^{2}}}=\dfrac{2h}{b-a} \\\ \end{aligned}
We got 2m1m2=2hba\dfrac{2m}{1-{{m}^{2}}}=\dfrac{2h}{b-a}.
We will just cross-multiply this
Upon doing so, we get the following :
2m1m2=2hba m(ba)=h(1m2) h(1m2)+m(ab)=0 \begin{aligned} & \Rightarrow \dfrac{2m}{1-{{m}^{2}}}=\dfrac{2h}{b-a} \\\ & \Rightarrow m\left( b-a \right)=h\left( 1-{{m}^{2}} \right) \\\ & \Rightarrow h\left( 1-{{m}^{2}} \right)+m\left( a-b \right)=0 \\\ \end{aligned}
\therefore Hence, the line y=mxy=mx bisects the angle between the lines ax22hxy+by2=0a{{x}^{2}}-2hxy+b{{y}^{2}}=0 if h(1m2)+m(ab)=0h\left( 1-{{m}^{2}} \right)+m\left( a-b \right)=0.

Note: Straight lines and pairs of straight lines are lessons with many results. It has many formulae and we need to know that way a result is proved since it will help in later questions. We should remember all the formulae and care must be taken while doing any calculations. These chapters can be clubbed together with other geometry chapters and asked. This can even be asked in permutations and combinations. Thorough practice is required.